Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Climate change as a global amplifier of human–wildlife conflict

Abstract

Climate change and human–wildlife conflict are both pressing challenges for biodiversity conservation and human well-being in the Anthropocene. Climate change is a critical yet underappreciated amplifier of human–wildlife conflict, as it exacerbates resource scarcity, alters human and animal behaviours and distributions, and increases human–wildlife encounters. We synthesize evidence of climate-driven conflicts occurring among ten taxonomic orders, on six continents and in all five oceans. Such conflicts disrupt both subsistence livelihoods and industrial economies and may accelerate the rate at which human–wildlife conflict drives wildlife declines. We introduce a framework describing distinct environmental, ecological and sociopolitical pathways through which climate variability and change percolate via complex social–ecological systems to influence patterns and outcomes of human–wildlife interactions. Identifying these pathways allows for developing mitigation strategies and proactive policies to limit the impacts of human–wildlife conflict on biodiversity conservation and human well-being in a changing climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A conceptual framework to describe how climate drivers propagate through social–ecological systems to impact human–wildlife conflicts.
Fig. 2: Key examples of climate-driven human–wildlife conflicts in the literature.
Fig. 3: Synthesis of climate-driven human–wildlife conflicts documented in the literature.

Similar content being viewed by others

Data availability

All case study data derived from the systematic literature review are available at https://github.com/Abrahms-Lab/Climate-Conflict-Review and archived via Zenodo (https://doi.org/10.5281/zenodo/7502350).

Code availability

All R code used for analyses is available at https://github.com/Abrahms-Lab/Climate-Conflict-Review and archived via Zenodo (https://doi.org/10.5281/zenodo/7502350).

References

  1. Abrahms, B. Human–wildlife conflict under climate change. Science 373, 484–485 (2021).

    Article  CAS  Google Scholar 

  2. Nyhus, P. J. Human–wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).

    Article  Google Scholar 

  3. Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).

    Article  CAS  Google Scholar 

  4. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article  CAS  Google Scholar 

  5. Abrahms, B. et al. Data from: Climate change as an amplifier of human–wildlife conflict. Github https://github.com/Abrahms-Lab/Climate-Conflict-Review (2022).

  6. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  7. Sydeman, W. J., Santora, J. A., Thompson, S. A., Marinovic, B. & Lorenzo, E. D. Increasing variance in North Pacific climate relates to unprecedented ecosystem variability off California. Glob. Change Biol. 19, 1662–1675 (2013).

    Article  Google Scholar 

  8. Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nat. Clim. Change 7, 568–572 (2017).

    Article  Google Scholar 

  9. Filazzola, A., Blagrave, K., Imrit, M. A. & Sharma, S. Climate change drives increases in extreme events for lake ice in the Northern Hemisphere. Geophys. Res. Lett. 47, e2020GL089608 (2020).

  10. Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

    Article  CAS  Google Scholar 

  11. Martin, J. T. et al. Increased drought severity tracks warming in the United States’ largest river basin. Proc. Natl Acad. Sci. USA 117, 11328–11336 (2020).

    Article  CAS  Google Scholar 

  12. Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).

    Article  Google Scholar 

  13. Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).

    Article  Google Scholar 

  14. Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    Article  CAS  Google Scholar 

  15. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  Google Scholar 

  16. Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial plants: a meta‐analysis. New Phytol. 188, 187–198 (2010).

    Article  Google Scholar 

  17. Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).

    Article  Google Scholar 

  18. Marinovic, B. B., Croll, D. A., Gong, N., Benson, S. R. & Chavez, F. P. Effects of the 1997–1999 El Niño and La Niña events on zooplankton abundance and euphausiid community composition within the Monterey Bay coastal upwelling system. Prog. Oceanogr. 54, 265–277 (2002).

    Article  Google Scholar 

  19. Kardol, P. et al. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old‐field ecosystem. Glob. Change Biol. 16, 2676–2687 (2010).

    Article  Google Scholar 

  20. Prugh, L. R. et al. Ecological winners and losers of extreme drought in California. Nat. Clim. Change 8, 819–824 (2018).

    Article  Google Scholar 

  21. Sorte, C. J. B., Williams, S. L. & Zerebecki, R. A. Ocean warming increases threat of invasive species in a marine fouling community. Ecology 91, 2198–2204 (2010).

    Article  Google Scholar 

  22. Muehlenbein, M. P. Human–environment interactions, current and future directions. Hum. Environ. Interact. 1, 79–94 (2012).

    Google Scholar 

  23. Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    Article  CAS  Google Scholar 

  24. Mason, T. H. E., Keane, A., Redpath, S. M. & Bunnefeld, N. The changing environment of conservation conflict: geese and farming in Scotland. J. Appl. Ecol. 55, 651–662 (2018).

    Article  Google Scholar 

  25. Pérez-Flores, J., Mardero, S., López-Cen, A., Contreras-Moreno, F. M. & Pérez-Flores, J. Human–wildlife conflicts and drought in the greater Calakmul Region, Mexico: implications for tapir conservation. Neotrop. Biol. Conserv. 16, 539–563 (2021).

    Article  Google Scholar 

  26. Mariki, S. B., Svarstad, H. & Benjaminsen, T. A. Elephants over the cliff: explaining wildlife killings in Tanzania. Land Use Policy 44, 19–30 (2015).

    Article  Google Scholar 

  27. Mukeka, J. M., Ogutu, J. O., Kanga, E. & Roskaft, E. Spatial and temporal dynamics of human–wildlife conflicts in the Kenya Greater Tsavo Ecosystem. Hum. Wildl. Interact. 14, 255–272 (2020).

    Google Scholar 

  28. Popp, J. N., Hamr, J., Chan, C. & Mallory, F. F. Elk (Cervus elaphus) railway mortality in Ontario. Can. J. Zool. 96, 1066–1070 (2018).

    Article  Google Scholar 

  29. Olson, D. D. et al. How does variation in winter weather affect deer–vehicle collision rates? Wildl. Biol. 21, 80–87 (2015).

    Article  Google Scholar 

  30. Nyhus, P. & Tilson, R. Agroforestry, elephants, and tigers: balancing conservation theory and practice in human-dominated landscapes of Southeast Asia. Agric. Ecosyst. Environ. 104, 87–97 (2004).

    Article  Google Scholar 

  31. Laufenberg, J. S., Johnson, H. E., Doherty, P. F. & Breck, S. W. Compounding effects of human development and a natural food shortage on a black bear population along a human development–wildland interface. Biol. Conserv 224, 188–198 (2018).

    Article  Google Scholar 

  32. Blondin, H., Abrahms, B., Crowder, L. B. & Hazen, E. L. Combining high temporal resolution whale distribution and vessel tracking data improves estimates of ship strike risk. Biol. Conserv. 250, 108757 (2020).

    Article  Google Scholar 

  33. Abrahms, B. et al. Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species. Divers. Distrib. 25, 1182–1193 (2019).

    Article  Google Scholar 

  34. Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    Article  CAS  Google Scholar 

  35. Kabir, M., Ghoddousi, A., Awan, M. S. & Awan, M. N. Assessment of human–leopard conflict in Machiara National Park, Azad Jammu and Kashmir, Pakistan. Eur. J. Wildl. Res. 60, 291–296 (2014).

    Article  Google Scholar 

  36. Soto, J. R. Patterns and Determinants of Human–Carnivore Conflicts in the Tropical Lowlands of Guatemala (Univ. of Florida, 2008).

  37. Honda, T. & Kozakai, C. Mechanisms of human–black bear conflicts in Japan: in preparation for climate change. Sci. Total Environ. 739, 140028 (2020).

    Article  CAS  Google Scholar 

  38. Mukeka, J. M., Ogutu, J. O., Kanga, E. & Røskaft, E. Human–wildlife conflicts and their correlates in Narok County, Kenya. Glob. Ecol. Conserv. 18, e00620 (2019).

    Article  Google Scholar 

  39. Kuiper, T. R. et al. Seasonal herding practices influence predation on domestic stock by African lions along a protected area boundary. Biol. Conserv. 191, 546–554 (2015).

    Article  Google Scholar 

  40. Funston, P. J., Mills, M. G. L. & Biggs, H. C. Factors affecting the hunting success of male and female lions in the Kruger National Park. J. Zool. 253, 419–431 (2001).

    Article  Google Scholar 

  41. Schiess-Meier, M., Ramsauer, S., Gabanapelo, T. & Konig, B. Livestock predation—insights from problem animal control registers in Botswana. J. Wildl. Manag. 71, 1267–1274 (2007).

    Article  Google Scholar 

  42. Wilder, J. M. et al. Polar bear attacks on humans: implications of a changing climate. Wildl. Soc. B 41, 537–547 (2017).

    Article  Google Scholar 

  43. Towns, L., Derocher, A. E., Stirling, I., Lunn, N. J. & Hedman, D. Spatial and temporal patterns of problem polar bears in Churchill, Manitoba. Polar Biol. 32, 1529–1537 (2009).

    Article  Google Scholar 

  44. Schmidt, A. & Clark, D. ‘It’s just a matter of time:’ lessons from agency and community responses to polar bear-inflicted human injury. Conserv. Soc. 16, 64 (2018).

    Article  Google Scholar 

  45. Koenig, J., Shine, R. & Shea, G. The dangers of life in the city: patterns of activity, injury and mortality in suburban lizards (Tiliqua scincoides). J. Herpetol. 36, 62–68 (2002).

    Article  Google Scholar 

  46. Whitaker, P. B. & Shine, R. Responses of free-ranging brownsnakes (Pseudonaja textilis: Elapidae) to encounters with humans. Wildl. Res. 26, 689–704 (1999).

    Article  Google Scholar 

  47. Saberwal, V., Gibbs, J., Chellam, R. & Johnsingh, A. Lion–human conflict in the Gir Forest, India. Conserv. Biol. 8, 501–507 (1994).

    Article  Google Scholar 

  48. Ferreira, S. M. & Viljoen, P. African large carnivore population changes in response to a drought. Afr. J. Wildl. Res. https://hdl.handle.net/10520/ejc-wild2-v52-n1-a1 (2022).

  49. Masiaine, S. et al. Landscape-level changes to large mammal space use in response to a pastoralist incursion. Ecol. Indic. 121, 107091 (2021).

    Article  Google Scholar 

  50. Kiria, E. A Spatial Multi-criteria Analysis of Land Use, Land Cover and Climate Changes on Wildlife Ecosystems Planning and Management in Meru Conservation Area (Chuka Univ., 2018).

  51. Benansio, J., Demaya, G., Dendi, D. & Luiselli, L. Attacks by Nile crocodiles (Crocodylus nilotticus) on humans and livestock in the Sudd wetlands, South Sudan. Russ. J. Herpetol. https://doi.org/10.30906/1026-2296-2022-29-4-199-205 (2022).

  52. Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans‐Arctic shipping routes. Geophys. Res. Lett. 43, 9720–9728 (2016).

    Article  Google Scholar 

  53. Ivanova, S. V. et al. Shipping alters the movement and behavior of Arctic cod (Boreogadus saida), a keystone fish in Arctic marine ecosystems. Ecol. Appl. 30, e02050 (2020).

    Article  Google Scholar 

  54. Hauser, D. D. W., Laidre, K. L. & Stern, H. L. Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route. Proc. Natl Acad. Sci. USA 5, 201803543–201803546 (2018).

    Google Scholar 

  55. Hovelsrud, G. K., McKenna, M. & Huntington, H. P. Marine mammal harvests and other interactions with humans. Ecol. Appl. 18, S135–S147 (2008).

    Article  Google Scholar 

  56. Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).

  57. Samhouri, J. F. et al. Marine heatwave challenges solutions to human–wildlife conflict. Proc. R. Soc. B 288, 20211607 (2021).

    Article  Google Scholar 

  58. Chapman, B. K. & McPhee, D. Global shark attack hotspots: identifying underlying factors behind increased unprovoked shark bite incidence. Ocean Coast. Manag. 133, 72–84 (2016).

    Article  Google Scholar 

  59. Burgess, G., Buch, R., Carvalho, F., Garner, B. & Walker, C. in Sharks and Their Relatives II: Biodiversity, Adaptive Physiology, and Conservation (eds Carrier, J. C. et al.) 541–565 (CRC Press, 2010).

  60. Woodward, A. R., Leone, E. H., Dutton, H. J., Waller, J. E. & Hord, L. Characteristics of American alligator bites on people in Florida. J. Wildl. Manag. 83, 1437–1453 (2019).

    Article  Google Scholar 

  61. Khorozyan, I., Soofi, M., Ghoddousi, A., Hamidi, A. K. & Waltert, M. The relationship between climate, diseases of domestic animals and human–carnivore conflicts. Basic Appl. Ecol. 16, 703–713 (2015).

    Article  Google Scholar 

  62. Treves, A. & Bruskotter, J. Tolerance for predatory wildlife. Science 344, 476–477 (2014).

    Article  CAS  Google Scholar 

  63. Carpenter, S. Exploring the impact of climate change on the future of community‐based wildlife conservation. Conserv. Sci. Pract. 4, e585 (2022).

  64. Nisi, A. Cryptic Neighbors: Connecting Movement Ecology and Population Dynamics for a Large Carnivore in a Human-dominated Landscape (Univ. California, 2021). .

  65. Asiyanbi, A. P. A political ecology of REDD+: property rights, militarised protectionism, and carbonised exclusion in Cross River. Geoforum 77, 146–156 (2016).

    Article  Google Scholar 

  66. Dawson, N. M. et al. Barriers to equity in REDD+: deficiencies in national interpretation processes constrain adaptation to context. Environ. Sci. Policy 88, 1–9 (2018).

    Article  Google Scholar 

  67. Rabaiotti, D. et al. High temperatures and human pressures interact to influence mortality in an African carnivore. Ecol. Evol. 11, 8495–8506 (2021).

    Article  Google Scholar 

  68. Vargas, S. P., Castro-Carrasco, P. J., Rust, N. A. & F, J. L. R. Climate change contributing to conflicts between livestock farming and guanaco conservation in central Chile: a subjective theories approach. Oryx 55, 275–283 (2021).

    Article  Google Scholar 

  69. Heemskerk, S. et al. Temporal dynamics of human–polar bear conflicts in Churchill, Manitoba. Glob. Ecol. Conserv. 24, e01320 (2020).

    Article  Google Scholar 

  70. Schell, C. J. et al. The evolutionary consequences of human–wildlife conflict in cities. Evol. Appl. 14, 178–197 (2021).

    Article  Google Scholar 

  71. Clark, J. A. & May, R. M. Taxonomic bias in conservation research. Science 297, 191–192 (2002).

    Article  CAS  Google Scholar 

  72. Ravenelle, J. & Nyhus, P. J. Global patterns and trends in human–wildlife conflict compensation. Conserv. Biol. 31, 1247–1256 (2017).

    Article  Google Scholar 

  73. Zack, C. S., Milne, B. T. & Dunn, W. Southern oscillation index as an indicator of encounters between humans and black bears in New Mexico. Wildl. Soc. Bull. 31, 517–520 (2003).

    Google Scholar 

  74. Acosta-Jamett, G., Gutiérrez, J. R., Kelt, D. A., Meserve, P. L. & Previtali, M. A. El Niño Southern Oscillation drives conflict between wild carnivores and livestock farmers in a semiarid area in Chile. J. Arid. Environ. 126, 76–80 (2016).

    Article  Google Scholar 

  75. Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    Article  CAS  Google Scholar 

  76. Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science 321, 123–126 (2008).

    Article  CAS  Google Scholar 

  77. Powell, G., Versluys, T. M. M., Williams, J. J., Tiedt, S. & Pooley, S. Using environmental niche modelling to investigate abiotic predictors of crocodilian attacks on people. Oryx 54, 639–647 (2020).

    Article  Google Scholar 

  78. Maxwell, S. M. et al. Dynamic ocean management: defining and conceptualizing real-time management of the ocean. Mar. Policy 58, 42–50 (2015).

    Article  Google Scholar 

  79. Maxwell, S. M., Gjerde, K. M., Conners, M. G. & Crowder, L. B. Mobile protected areas for biodiversity on the high seas. Science 367, 252–254 (2020).

    Article  CAS  Google Scholar 

  80. Pons, M. et al. Trade-offs between bycatch and target catches in static versus dynamic fishery closures. Proc. Natl Acad. Sci. USA 119, e2114508119 (2022).

    Article  Google Scholar 

  81. Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).

    Article  Google Scholar 

  82. Mason, N., Ward, M., Watson, J. E. M., Venter, O. & Runting, R. K. Global opportunities and challenges for transboundary conservation. Nat. Ecol. Evol. 4, 694–701 (2020).

    Article  Google Scholar 

  83. Dickman, A. J., Macdonald, E. A. & Macdonald, D. W. A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. Proc. Natl Acad. Sci. USA 108, 13937–13944 (2011).

    Article  CAS  Google Scholar 

  84. Ej, N. G. et al. A Future for All: The Need for Human–Wildlife Coexistence (UNEP, 2021).

  85. Lankford, A. J., Svancara, L. K., Lawler, J. J. & Vierling, K. Comparison of climate change vulnerability assessments for wildlife. Wildl. Soc. Bull. 38, 386–394 (2014).

    Article  Google Scholar 

  86. Syombua, M. An Analysis of Human–Wildlife Conflicts in Tsavo West-Amboseli Agro-Ecosystem Using an Integrated Geospatial Approach: A Case Study of Taveta District (Univ. of Nairobi, 2013).

  87. Malhi, Y. et al. The role of large wild animals in climate change mitigation and adaptation. Curr. Biol. 32, R181–R196 (2022).

    Article  CAS  Google Scholar 

  88. Aryal, A., Brunton, D. & Raubenheimer, D. Impact of climate change on human–wildlife–ecosystem interactions in the Trans-Himalaya region of Nepal. Theor. Appl. Climatol. 115, 517–529 (2013).

    Article  Google Scholar 

  89. Aryal, A., Brunton, D., Ji, W., Barraclough, R. K. & Raubenheimer, D. Human–carnivore conflict: ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain. Sci. 9, 321–329 (2014).

    Article  Google Scholar 

  90. Aryal, A. et al. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol. Evol. 6, 4065–4075 (2016).

    Article  Google Scholar 

  91. Nowell, K., Li, J., Paltsyn, M. & Sharma, R. An Ounce of Prevention: Snow Leopard Crime Revisited (Traffic Report, 2016).

Download references

Acknowledgements

We are grateful to A. Zimmerman and L. Withey for providing early feedback on our manuscript. We thank our institutions for supporting this work. L.W. was supported under an NSF Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

B.A. conceived of the work and led the writing. B.A., T.J.C.-W., E.J., A.M., A.C.N., K.R. and L.W. performed the systematic literature review. All authors contributed writing, edits and ideas to the manuscript.

Corresponding author

Correspondence to Briana Abrahms.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Maria Paniw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and Fig. 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahms, B., Carter, N.H., Clark-Wolf, T.J. et al. Climate change as a global amplifier of human–wildlife conflict. Nat. Clim. Chang. 13, 224–234 (2023). https://doi.org/10.1038/s41558-023-01608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01608-5

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene