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Abstract

Satellite-derived shoreline observations combined with dynamic shoreline models enable fine-scale predictions of coastal change

across large spatiotemporal scales. Here, we present a satellite-data-assimilated, “littoral-cell”-based, ensemble Kalman-filter

shoreline model to predict coastal change and uncertainty due to waves, sea-level rise, and other natural and anthropogenic

processes. We apply the developed ensemble model to the entire California coastline (approximately 1,350 km), much of

which is sparsely monitored with traditional survey methods (e.g., Lidar/GPS). Water-level-corrected, satellite-derived shoreline

observations (obtained from the CoastSat toolbox) offer a nearly unbiased representation of in-situ surveyed shorelines (e.g.,

Mean Sea Level elevation contours) at Ocean Beach, San Francisco. We demonstrate that model calibration with satellite

observations during a 20-year hindcast period (1995 to 2015) provides a nearly equivalent model forecast accuracy during

a validation period (2015 to 2020) compared to model calibration with monthly in-situ observations at Ocean Beach. When

comparing model-predicted shoreline positions to satellite-derived observations, the model achieves an accuracy of <10 m RMSE

for nearly half of the entire California coastline for the validation period. The calibrated/validated model is then applied for

multi-decadal simulations of shoreline change due projected wave and sea-level conditions while holding the model parameters

fixed. By 2100, the model estimates that 25 to 70% of California’s beaches may become completely eroded due to sea-level rise

scenarios of 0.5 to 3.0 m, respectively. The satellite-data-assimilated modeling system presented here is generally applicable to

a variety of coastal settings around the world owing to the global coverage of satellite imagery.

1



 

1 

 

A model integrating satellite-derived shoreline observations for predicting fine-scale 1 

shoreline response to waves and sea-level rise across large coastal regions 2 

Sean Vitousek1,2, Kilian Vos3, Kristen D.  Splinter 3, Li Erikson1, and Patrick L. Barnard1 3 

Author Affiliations 4 

1. U.S. Geological Survey 5 

2. University of Illinois at Chicago 6 

3. UNSW Sydney 7 

 8 

Abstract 9 

Satellite-derived shoreline observations combined with dynamic shoreline models enable fine-10 

scale predictions of coastal change across large spatiotemporal scales.  Here, we present a 11 

satellite-data-assimilated, “littoral-cell”-based, ensemble Kalman-filter shoreline model to 12 

predict coastal change and uncertainty due to waves, sea-level rise, and other natural and 13 

anthropogenic processes.  We apply the developed ensemble model to the entire California 14 

coastline (approximately 1,350 km), much of which is sparsely monitored with traditional survey 15 

methods (e.g., Lidar/GPS).  Water-level-corrected, satellite-derived shoreline observations 16 

(obtained from the CoastSat toolbox) offer a nearly unbiased representation of in-situ surveyed 17 

shorelines (e.g., Mean Sea Level elevation contours) at Ocean Beach, San Francisco.  We 18 

demonstrate that model calibration with satellite observations during a 20-year hindcast period 19 

(1995 to 2015) provides a nearly equivalent model forecast accuracy during a validation period 20 

(2015 to 2020) compared to model calibration with monthly in-situ observations at Ocean Beach.  21 

When comparing model-predicted shoreline positions to satellite-derived observations, the model 22 
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achieves an accuracy of <10 m RMSE for nearly half of the entire California coastline for the 23 

validation period.  The calibrated/validated model is then applied for multi-decadal simulations 24 

of shoreline change due projected wave and sea-level conditions while holding the model 25 

parameters fixed. By 2100, the model estimates that 25 to 70% of California’s beaches may 26 

become completely eroded due to sea-level rise scenarios of 0.5 to 3.0 m, respectively.  The 27 

satellite-data-assimilated modeling system presented here is generally applicable to a variety of 28 

coastal settings around the world owing to the global coverage of satellite imagery.  29 

 30 

Plain Language Summary (PLS) 31 

We present a computer model to predict shoreline change due to waves, sea-level rise, and other 32 

local processes.  We apply the model to the entire California coastline (approximately 1,350 km), 33 

much of which is not well monitored using traditional survey methods.  Observations of 34 

historical shoreline position obtained from satellite images can be used in lieu of traditional 35 

shoreline survey data to estimate erosion/accretion trends as well as to calibrate and validate 36 

models.  By 2100, the model estimates that 25 to 70% of California’s beaches may become 37 

completely eroded due to sea-level rise scenarios of 0.5 to 3.0 m, respectively.   38 

 39 

1. Introduction 40 

Accurate predictions of coastal erosion in response to sea-level rise, changing wave conditions, 41 

and reduced natural sediment supplies are increasingly sought by coastal managers to assess the 42 

impacts of climate change on beaches (Masselink et al., 2016; Vitousek et al., 2017a; Le 43 
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Cozannet et al., 2019).  Several well-tested and emerging models are capable of simulating 44 

coastal erosion (Roelvink, 2011; Montaño et al., 2020; Toimil et al., 2020a, Ranasinghe 2020, 45 

Hunt et al., 2023). However, most models inherently capture a limited number of processes 46 

occurring at a narrow geographic scope, because of computational or data availability 47 

constraints. Although there are many different paradigms of coastal evolution models, two main 48 

classifications often emerge: (1) physics-based numerical models and (2) reduced-complexity (or 49 

process-based) models.  On the one hand, physics-based models numerically solve equations of 50 

conservation of mass and momentum of fluid and sediment with the aim to resolve all (or nearly 51 

all) of the important oceanographic/hydrodynamic processes resulting in sediment transport and 52 

coastal change.  However, the high computational effort of physics-based models often hinders 53 

simulation of large-scale (e.g., 100’s m to 100 km) or long-term (e.g., annual and longer) coastal 54 

change.  On the other hand, reduced-complexity models (Murray 2007) seek to parameterize a 55 

limited number of dominant coastal-change processes or trends, usually without explicitly 56 

resolving the underlying hydrodynamic processes responsible for sediment transport.  The 57 

biggest drawback of reduced-complexity models is that they generally require observational data 58 

to parameterize, calibrate, and/or validate the model (Vitousek et al., 2017; Montaño et al., 59 

2020), at least when used in a predictive sense rather than an exploratory sense (Murray et al., 60 

2016).  Although they do not explicitly resolve all relevant physical processes, data-driven 61 

reduced-complexity models can often implicitly account for the most dominant processes via 62 

calibration to local observations (Vitousek et al., 2017).  However, time series of coastal-change 63 

observations over multiple years are often sparse or narrow in geographic scope.  64 

The field of coastal morphodynamics has, until recently, been ‘data poor,’ with long-term 65 

monitoring data existing only at a limited number sites (Vitousek et al., 2022).  However, 66 
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reliable forecasts of coastal erosion on decadal to centennial timescales over large geographic 67 

regions (e.g., state and country scale) are increasingly sought, even in ‘data-poor’ environments.  68 

Recent progress has been made to improve the temporal frequency of coastal observations over 69 

large spatiotemporal scales (e.g., 1 m - 100 km and days - decades) using satellites (Pardo-70 

Pascual et al., 2012; Hagenaars et al., 2017; Luijendijk et al., 2018; Vos et al., 2019a,b; Nelson & 71 

Miselis, 2019, Vos et al., 2023).  Since the 1980’s, Earth-observing satellites (e.g., the Landsat 72 

missions) have collected a massive archive of coastal imagery data that have only recently been 73 

leveraged for science and engineering applications (Turner et al., 2021).  Recent advances in 74 

satellite remote-sensing analysis provide a window into the recent past and current state of the 75 

world’s beaches (Luijendijk et al., 2018) and their large-scale vulnerability to climatic forces like 76 

El Niño (Vos et al., 2023).  By leveraging the large streams of data offered from satellites, 77 

reduced-complexity coastal-change models seem poised for success in a challenging field of 78 

study owing to the newly found ‘treasure trove’ of data (Hunt et al., 2023, Vitousek et al., 2023, 79 

Barnard & Vitousek 2023).   80 

For more than two decades, satellite-data have been effectively assimilated into predictive 81 

atmosphere and ocean models (e.g., ERA5 – Hersbach et al., 2020 and CFSR – Saha et al., 82 

2010).  Yet, integration of satellite-data with large-scale, dynamic coastal-change models have 83 

remained underdeveloped, until now.  Most applications of satellite-derived shorelines 84 

investigate shoreline trends (e.g., Luijendijk et al., 2018, Calkoen et al., 2021, Castelle et al., 85 

2022) or interannual variability (Vos et al., 2023), rather than synoptic shoreline variability with 86 

wave and storm events.  Recently, Alvarez-Cuesta et al., (2021a,b) integrated satellite-derived 87 

across 40 km of the Spanish Mediterranean Coast into a dynamic shoreline model. Similarly, in 88 

this paper, we demonstrate how decades of satellite imagery can be leveraged to accurately 89 
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calibrate and validate coastal evolution models, enabling predictions/projections of coastal 90 

change in historically data-poor environments over vast geographic scales. 91 

2. Methods 92 

2.1 Shoreline model  93 

The shoreline-change model, used here, is an update of CoSMoS-COAST (Vitousek et al., 2017; 94 

Vitousek et al., 2021), a transect-based, data-assimilated ‘one-line’ model that integrates 95 

longshore and cross-shore transport processes.  The CoSMoS-COAST model was initially 96 

developed as the long-term shoreline change component of the USGS Coastal Storm Modeling 97 

System (CoSMoS; Barnard et al., 2014), and the model’s novel developments as part of the 98 

current work are presented in Figure 1.  In summary, the notable and novel aspects of the current 99 

work include: (1) integration with satellite-derived shorelines [which provides nearly a thousand-100 

fold increase in assimilation data over the previous iteration in Vitousek et al., (2017)], (2) the 101 

development of a novel “littoral-cell based” data-assimilation method (detailed in Appendix B), 102 

and (3) projections across the entire state of California (approximately 1,350 km) compared to 103 

the previous iteration in Vitousek et al., (2017), which spanned only 500 km of southern 104 

California. 105 
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 106 

Figure 1 – An overview of the CoSMoS-COAST model, including the model inputs/outputs, 107 

variables/parameters, and governing equation for the current application in California.  The 108 

figure also depicts advancements in the model from its initial development (Vitousek et al. 2017 109 

– black dashed lines) to Vitousek et al., 2021 (blue dashed lines) and to the current paper (orange 110 

dashed lines).  111 

2.1.1 Model governing equation 112 

The model governing equation, which is based on the one-dimensional conservation of sediment 113 

volume in the alongshore direction and initially developed in Vitousek et al., (2017, 2021), is 114 

given by 115 
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Each term in Eq. (1) is defined in Figure 1 and detailed in Appendix A, alongside the 117 

presentation of numerical methods to solve Eq. (1).  In brief, Eq. (1) synthesizes several popular 118 

individual-process models including: [1] a ‘one-line' model for longshore transport (Pelnard-119 

Considere, 1956); [2] a cross-shore beach profile change model due to sea-level rise (Bruun, 120 

1962; Davidson-Arnott, 2005; Anderson et al., 2015); [3] a long-term residual shoreline trend ltv  121 

that represents long-term processes like sources and sinks of sediment, e.g., fluvial inputs, 122 

headland bypassing, beach nourishments, etc., which is estimated via assimilation of local 123 

shoreline observations; [4] a wave-driven cross-shore equilibrium shoreline change model that 124 

has been modified (without changing the underlying dynamics) from Yates et al., (2009), as 125 

discussed in Vitousek et al., (2021); and finally [5] a noise term.  Here, the noise term represents 126 

(normally distributed) random, short-term, unresolved processes that cause fluctuations in 127 

shoreline position with zero mean and user-prescribed standard deviation  .  The model 128 

includes an ensemble Kalman filter data-assimilation method based on ‘littoral cells’ (discussed 129 

below and detailed in Appendix B) that sequentially adjusts the model parameters (given in 130 

Figure 1) to best match local observations at each time step (when data are available). 131 

2.1.2 Model transects and littoral-cell-based data assimilation 132 

The California model is comprised of 11,539 transects spaced approximately 100-200 m apart 133 

(see Figure 2).  Each transect is designated as either “full model”, “cross-shore only”, “rate 134 

only”, “cliff only” or “no prediction” based on geologic characteristics (which occur for 31.9%, 135 
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18.2%, 30.6%, 12%, and 7.3% of the California coastline, respectively).  Based on the transect 136 

designation, the shoreline model retains or neglects certain physical processes and the 137 

corresponding terms in the governing equation, Eq. (1), as described in Appendix A.2.  For 138 

example, “cross-shore only” transects neglect term [1] in Eq. (1), and “rate only” transects 139 

neglect terms [1] and [4]. 140 

 141 

Figure 2 – The (~100-200 m spaced) model transects for the coast of California shown in panel 142 

A. Panel B shows a zoomed-in plot of the transects at Ocean Beach, San Francisco.  Transects 143 

that are designated as “full model”, “cross-shore only”, “rate only”, “cliff only”, and “no 144 

prediction” are shown in green, yellow, red, purple, and black, respectively. (Basemaps from 145 

Google Earth). 146 

 147 
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The model transects are grouped into so-called ‘littoral cells’, which represent the basis for the 148 

novel data-assimilation method, which is fully detailed in Appendix B.  The grouping of 149 

transects into littoral cells can be either user-specified or done automatically, by grouping all 150 

neighboring transects with the same transect designation into a littoral cell (i.e., all adjacent “full 151 

model” transects constitute a littoral cell), as is done here.  The original data-assimilation method 152 

used in CoSMoS-COAST (Vitousek et al. 2017) operated independently for each transect; 153 

meaning that any transects without coincident (e.g., intersecting) shoreline observations did not 154 

receive any parameter adjustments.  The current littoral-cell based data-assimilation method uses 155 

all observations within a littoral cell (at a given time step) to assimilate the model parameter 156 

values for all transects within that littoral cell (while simultaneously prioritizing the influence of 157 

local observations at each transect).  This littoral-cell based method provides some significant 158 

advantages over individual-transect method, which primarily stem from using more assimilation 159 

data and allowing those data to have a greater spatial influence on nearby transects.  For 160 

example, the new method facilitates assimilation of sparsely spaced beach-profile data (e.g., 161 

from GPS or total-station surveys) onto more densely spaced model transects.  Further 162 

advantages and the technical details of the littoral-cell based data-assimilation method are 163 

discussed in Appendix B. 164 

2.1.3 Model forcing and scenarios 165 

Shoreline evolution is often critically linked to oceanographic forcing from waves and sea level 166 

(Wright & Short 1984, Ashton et al., 2001, Splinter et al., 2014, Troy et al., 2021).  Hence, 167 

reliable shoreline modeling generally demands accurate hindcasts and robust projections of wave 168 

and sea-level conditions.  As shown in Figure 1, the model is forced by time series of parametric 169 
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wave conditions (i.e., sH , 
pT , and   ) and sea-level rise, S . In the current application, historic 170 

wave conditions (1995-2020) are derived primarily from the CDIP hindcast (O’Reilly et al., 171 

2016), whereas projected wave conditions (2020-2100) are derived from a regional-to-local 172 

nested WaveWatch III model (Erikson et al., 2015), which applies wind forcing from the GFDL-173 

ESM2M climate model (Delworth et al., 2006).  Sea-level projections are generated from 174 

quadratic curves (following Vitousek et al., 2017), which cover a range of physically tenable sea-175 

level outcomes (e.g., 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, and 3.0 m) in California over the 21st 176 

century (e.g., Griggs et al., 2017, Sweet et al., 2022).  The specific details on the wave and sea-177 

level forcing conditions are presented in Appendix C.1 and C.2, respectively. 178 

Anthropogenic effects on coastal change are difficult to represent using models.  Humans make 179 

deliberate, real-time interventions (e.g., beach nourishments, dredging/dumping, 180 

bulldozing/berm-building, temporary shoreline armoring) in the coastal zone, especially during 181 

major storm events – yet, practically all existing shoreline models do not explicitly account them 182 

(Lazarus & Goldstein 2019).  However, fine-scale observations (e.g., such as those provided 183 

from satellites) offer a means to implicitly account for anthropogenic effects in the context of a 184 

data-driven model, at least in so much as their impact is reflected in the local shoreline behavior 185 

and observations thereof.  Thus, the estimation of long-term residual shoreline trends such as ltv  186 

in Eq. (1) via data assimilation provides a means of accounting for processes that are difficult, if 187 

not impossible, to account for explicitly. 188 

As in Vitousek et al., (2017), the model considers two binary (i.e., on or off) management 189 

scenarios: called the ‘hold the line’ and ‘continued accretion’.  The ‘hold the line’ versus ‘no 190 

hold the line’ scenarios prohibit or allow the modeled shoreline to erode past a so-called ‘non-191 
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erodible shoreline’ (detailed in Appendix C.3) that delineates the location of non-sandy 192 

substrates such as infrastructure, coastal cliffs, or vegetation.  The ‘continued accretion’ versus 193 

‘no continued accretion’ scenarios allow or prevent the persistence of residual accretion trends 194 

( lt 0v  ), respectively.  Justification and further details on the coastal management scenarios used 195 

here are given in Appendix C.3.   196 

 197 

2.2 Quantifying model performance and uncertainty 198 

Quantifying model performance and uncertainty remains a critical effort in pursuit of reliable 199 

coastal-change predictions.  In general, methods to assess model performance and uncertainty 200 

quantification are somewhat tailored to the model type, e.g., ‘simulation’ versus ‘exploratory’ 201 

(Murray et al., 2016).  ‘Simulation’ models typically seek to reproduce site-specific behavior and 202 

thus generally require characterization of model performance (e.g., compared to observations).  203 

Idealized, ‘exploratory’ models often seek to address uncertainty related to climate scenarios or 204 

to the magnitude and/or parametrization of processes or factors (for which direct observations 205 

are often lacking).  The current modeling application combines elements from both of the 206 

‘simulation’ and ‘exploratory’ archetypes: we seek the long-term simulation/prediction of site-207 

specific behavior under different climate and management scenarios.  Hence, to align with the 208 

simulation archetype, we apply a suite of methods to evaluate model performance and 209 

uncertainty, as described below. 210 

2.2.1 Model performance 211 
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The most common metric to evaluate model performance is the root-mean-square error (RMSE), 212 

which is given by 213 

( ) ( )( )m

2

obs odRMSE

1

1 N

i i
i

Y Y
N


=

= −           (2)  214 

where modY  and obsY  are the modeled and observed shoreline positions, respectively, among a 215 

time series of N  data points. 216 

Another popular model-performance metric is the index of agreement (Willmott 1981), which is 217 

given by 218 
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=

−
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− + −


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      (3) 219 

where the overbar indicates the mean of a quantity.  The index of agreement ranges from 220 

0 1d   , with values close to zero indicating poor and values close to one indicating excellent 221 

performance.  The index of agreement was recently used by Montaño et al., (2020) to evaluate 222 

the performance of shoreline models in a blind-test competition (at the test site of Tairua Beach, 223 

New Zealand with 15 years of calibration data and 3 years of data-blind comparisons), and the 224 

best performing shoreline models achieved 0.5 - 0.7d  .  As shown in Results, we assess 225 

model-performance metrics including the RMS error ( RMSE ) and the index of agreement ( d ), 226 

across California with the aid of satellite-derived shoreline observations.  We also characterize 227 

different types of model uncertainty including structural, epistemic, and intrinsic uncertainty, as 228 

described below. 229 
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2.2.2 Model uncertainty 230 

Several recent studies have investigated the uncertainty associated with individual (Davidson et 231 

al. 2013; Kroon et al., 2020, Zarifsanayei et al., 2021) or combined components (Banno et al., 232 

2015, Le Cozannet et al. 2019; D’Anna et al., 2020, 2021a, 2022, Vitousek et al., 2021, Toimil et 233 

al., 2017, 2021) of popular shoreline models (such as those described by processes/terms in Eq. 234 

(1)).  From these studies, consensus emerges that: (1) waves generally dominate uncertainties at 235 

short time scales and sea-level-driven recession or persistent shoreline accretion/erosion trends 236 

dominate uncertainties at long time scales, (2) intrinsic uncertainty (e.g., due to unknown model 237 

forcing conditions, like scenarios of future wave and sea-level conditions) is generally 238 

irreducible unlike epistemic uncertainty (e.g., due to unknown/uncertain model parameters), 239 

which is reducible via refining model parameters (using data-assimilation, for example), and (3) 240 

climate-driven intrinsic uncertainties (e.g., due to cascading uncertainties in greenhouse gas 241 

emissions, global temperature projections, future wave and sea-level conditions and different 242 

GCM projections thereof, future sediment supplies, and future coastal management pathways) 243 

are both broad and deep (Toimil et al., 2020b). 244 

In the current approach, we investigate the model’s epistemic, intrinsic, and structural 245 

uncertainty, as described below.  Firstly, we address epistemic/parametric uncertainty via 246 

applying a range of model parameters in an ensemble simulation and use data assimilation to 247 

calibrate site-specific values of model parameters over a large scale, with the aid of large 248 

amounts of satellite-derived shoreline observations (described below).  Following Vitousek et al. 249 

(2021), we also address epistemic uncertainty of the model solution/parameters by applying a 250 

calibrated additive-noise parameter   (which is part of term [5] in Eq. (1) and is described in 251 
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Section 2.1). Secondly, we assess intrinsic uncertainty by applying different sea-level and 252 

coastal-management scenarios, as described above and in Appendix C.  We also assess wave-253 

driven intrinsic/aleatoric uncertainty associated with extreme storm-driven erosion due to annual, 254 

20-year, and 100-year return period wave events, by fitting generalized extreme value (GEV) 255 

distributions to annual minima in the wave-driven, cross-shore equilibrium shoreline position, 256 

following Davidson et al. (2017) as detailed in Appendix C.1.  Thirdly, we investigate the 257 

model’s structural uncertainty, defined as the inadequacy, bias, or discrepancy between the 258 

model and the real world (i.e., observations).  The structural uncertainty (which we also refer to 259 

as the uncertainty due to ‘unresolved processes’) is, philosophically, a bit different than the 260 

intrinsic or epistemic uncertainty.  On the one hand, the intrinsic and epistemic uncertainties 261 

represent the model’s interpretation of how inaccurate it might be given different forcing 262 

conditions or parameters, respectively.  On the other hand, the structural uncertainty is how 263 

inaccurate the model actually is, compared with real-world observations.  We also note that 264 

investigating the structural uncertainty is rare among large-scale shoreline modeling applications, 265 

due to data-availability constraints.  Here, we investigate structural uncertainty by comparing the 266 

model to satellite-observed shorelines across California during the validation period of 2015-267 

2020.  We report the model structural uncertainty using the common and conservative approach 268 

of reporting RMSE2  (a.k.a., two-sigma) confidence bands surrounding the model’s median 269 

projections, which seeks to contain ~ 95% of the possible variations, following Taylor & Kuyatt 270 

(1994).  271 

 272 

 273 
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2.3 Satellite-derived shoreline observations 274 

The most intensive local monitoring programs in California have performed ~200 topographic 275 

beach surveys over the last two decades (e.g., Barnard et al., 2012, Young et al., 2021), yet 276 

satellite imagery can typically provide 500-1000 shoreline observations spanning almost four 277 

decades, at any given beach.  Here, we apply the CoastSat toolbox (Vos et al., 2019a) to derive 278 

historical shoreline observations from individual, cloud-free satellite images in the Landsat 279 

archive.  The satellite-derived, historical shoreline position data used as part of this study are 280 

available via Vos (2022) [data set]. Although historical Lidar and GPS data are also assimilated 281 

in the model, these CoastSat-derived shoreline observations represent the vast majority (i.e., 282 

99.9%) of assimilated data, which is described further in Appendix B.   283 

2.3.1 CoastSat 284 

The CoastSat image-processing methodology, used in the current application, derives shoreline 285 

position using the marching-squares algorithm (Lorensen & Cline 1987) that contours the 286 

threshold of the Modified Normalized Difference Water Index (MNDWI) that optimally splits 287 

the image-segmentation classes of ‘water’ and ‘sand’ using Otsu’s (1979) method (as detailed in 288 

Vos et al., 2019a).  CoastSat also provides methodology to estimate beach-face beach slopes 289 

(based on Vos et al., 2020), which are subsequently used to correct satellite-derived observations 290 

for tidal stage (e.g., using Eq. (4)).  CoastSat has been validated against traditional shoreline 291 

surveys in a variety of coastal settings worldwide including Truc Vert, France; Moruya, 292 

Australia; Narrabeen-Collaroy, Australia; Tairua, New Zealand; Duck, North Carolina, United 293 

States, and generally provides accuracy (i.e., root-mean-square error) on the order of 7-14 meters 294 

(Vos et al., 2019b) compared with in-situ surveys.  For the current application, we compare 295 

https://github.com/kvos/CoastSat
https://doi.org/10.5281/zenodo.4760144
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CoastSat-derived shoreline observations against in-situ GPS surveys at Ocean Beach, San 296 

Francisco, California, U.S., a well-monitored site with over 200 monthly surveys since 2004 297 

(Hansen and Barnard, 2010; Barnard et al., 2012).  Here, we compare the accuracy of satellite-298 

derived shoreline positions to the ‘ground-truthed’ GPS surveys of centimeter-scale accuracy.  299 

The primary difference between the GPS versus satellite-derived shoreline data sets is that the 300 

latter is based on a visual-detection proxy for the shoreline that is influenced by the local water 301 

level, whereas the GPS surveys are elevation-based (or datum-based) and thus are independent of 302 

the local water level.  Below and in Appendix D, we address differences between GPS- versus 303 

satellite-derived shorelines and the so-called ‘proxy-datum bias’ (Moore et al., 2006; Ruggiero & 304 

List, 2009), respectively. 305 

The shoreline positions in both GPS and satellite data sets at Ocean Beach are measured as the 306 

distance Y  from a fixed onshore baseline to the location of the mean sea-level (MSL) elevation 307 

contour.  Although more surveyed shoreline contours (e.g., mean high water - MHW) can be 308 

extracted from the GPS-derived elevation point-cloud data available at Ocean Beach, we use the 309 

MSL shoreline contour in order to maintain consistency with the satellite-derived water line.  In 310 

both data sets, observations over ~5 km of beach are interpolated onto shore-perpendicular 311 

model transects spaced approximately 200 m in the alongshore direction.   312 

As discussed in Appendix C, we find that CoastSat-derived MSL shorelines at Ocean Beach are 313 

generally biased landward of the GPS-derived MSL shorelines, and that the shoreline error 314 

( GPS satY Y− ), is highly correlated with wave height (as shown in Figure 21 in Appendix D).  This 315 

finding suggests that the satellite-derived shoreline positions are affected by wave setup (i.e., the 316 

persistent elevation of nearshore water levels inshore of breaking waves), which causes a 317 
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landward shift of the identified water-line/shoreline, and which might be bias-corrected with 318 

knowledge of synoptic wave conditions, wave setup elevation, and foreshore beach slope.   319 

2.3.2 Tide, wave-setup, and residual water-level correction to satellite-derived shorelines 320 

To remove bias due to synoptic water-level conditions, we correct the satellite-derived shoreline 321 

position along each transect according to  322 

( ) ( ) ( ) ( ) ( )raw tide MMSLA opt

[2] wave setup [4] residual[1] tide [3] montly mean 
correction correctioncorrection sea-level 

anomaly 
correction

the total, nearshore stil

corrected

1

f

Y t Y t t t t   


 
 
 
 = + + + +
 
 
 
 

l-water level

    (4) 323 

where each (time-varying) correction component is due to different processes affecting the total, 324 

nearshore still-water level, including [1] tide, [2] wave setup, [3] monthly mean sea-level 325 

anomalies, as well as [4] any remaining/residual bias.  Corrections are made using Eq. (4) for 326 

each of the model’s shore-normal transects with known, time-invariant foreshore beach slopes.  327 

At Ocean Beach, the beach slope 1/ 28f =  for all transects, which is estimated from Lidar 328 

data.  Here, CoastSat’s built-in tidal corrections (i.e., term [1] in Eq. (4)) come from time series 329 

of astronomic water-levels ( tide ) predicted using the Finite-Element Solution (FES14) ocean 330 

model (Lyard et al., 2021).  Here, we apply CoastSat’s built-in tidal corrections derived from the 331 

FES14 tide model rather than observed water levels (including water-level anomalies) from tide 332 

stations so that the method is applicable to sites/transects lacking nearby water-level 333 

observations.  However, there are pros and cons (namely portability and accuracy, respectively) 334 

to utilizing modeled over observed water levels. 335 
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We correct for wave setup (term [2] in Eq. (4)) using the Stockdon et al., (2006) empirical 336 

parameterization of wave setup for dissipative beaches,  337 

0 00.016 H L =  .            (5) 338 

In Eq. (5), deep-water wave height ( 0H ) and wave period ( 0T ), from which wavelength 339 

0
0

2

2

gT
L


= is calculated using linear wave theory, can come from model hindcasts or buoy 340 

records.  In the accuracy analysis presented here in Figure 3, we use wave conditions from the 341 

San Francisco wave buoy (#46026), located 33 km offshore from Ocean Beach.  We also tested 342 

slope-dependent wave-setup parameterizations (from Stockdon et al. (2006)), and the results (not 343 

shown) provided slightly less skill than the dissipative-beach-specific formulations.  The time 344 

series of monthly mean sea-level anomalies (MMSLA), MMSLA  term [3] in Eq. (4), comes from 345 

estimates from the NOAA Tides & Currents database’s San Francisco tide-gauge station 346 

(#9414290) located approximately 6 km away from Ocean Beach.  Finally, we estimate an 347 

optimal, ‘best-fit’ water-level correction (term [4] in Eq. (4)) of 
opt 12.72 =  cm, which is 348 

required for the satellite-derived shorelines to obtain unbiased estimates of shoreline position and 349 

is discussed further in Appendix D. 350 
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 351 

Figure 3 – The alongshore-averaged shoreline position with the (time-averaged) mean removed 352 

for the GPS surveys compared to the satellite-derived observations at Ocean Beach, San 353 

Francisco, California for different correction methods (i.e., different terms in Eq. (4)).  Left 354 

panels show time series of comparisons, and right panels show the histogram of the error (GPS-355 

derived minus satellite-derived shoreline position) as well as the bias, root-mean-square error 356 

(RMSE), and signal-to-noise ratio (SNR). 357 

 358 

We compare a sequence of corrections (based on Eq. (4)) to the raw satellite-derived shoreline 359 

position compared with the GPS data in Figure 3.  Panels A, C, E, G, and I on Figure 3 show the 360 

alongshore-averaged, satellite-derived shoreline position (red) compared to the alongshore-361 
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averaged GPS shoreline position (blue) across the surveyed portion of Ocean Beach with 362 

different correction methods applied (which are described below).  Note that the shoreline 363 

positions shown in Figure 3 are given relative to the mean of the time series.  Panels B, D, F, H, 364 

and J on Figure 3 show histograms of the error in the shoreline position ( GPS satY Y− ) when using 365 

different correction methods.  When calculating the shoreline error, the satellite-derived 366 

shoreline positions (collected approximately weekly, i.e., every 16 days across two overlapping 367 

Landsat missions) are linearly interpolated onto the dates of the (monthly) GPS surveys so that 368 

direct comparisons can be made.  Figure 3 B demonstrates that the raw satellite-derived shoreline 369 

positions have a mean (landward) bias of 16.8 m and a root-mean-square error (RMSE) of 24.3 370 

m.  Both the bias and the RMSE are sequentially reduced each time a new correction term is 371 

applied (via Eq. (4)).  After applying CoastSat’s built-in tidal corrections, the (landward) bias of 372 

the satellite-derived shorelines is reduced to 12.7 m and the RMSE is reduced to 18.8 m (see 373 

Figure 3 C and D).  Nevertheless, a fairly large bias remains.  The ineffectiveness of the tidal 374 

correction on reducing the overall bias is perhaps expected.  The tide oscillates somewhat evenly 375 

around mean sea level, and thus does not contribute significantly to the systematic landward bias 376 

of the satellite observations found here.  Wave setup, on the other hand, represents a persistent 377 

still-water-level change that is likely responsible for much of the landward bias between the 378 

satellite’s visual proxy interpretation of the shoreline position compared to the GPS’s elevation-379 

based (datum-based) interpretation of the shoreline position, which is uninfluenced by the 380 

presence of waves or the stage of the local water level.  Figure 3 E and F show that correcting for 381 

time-varying wave setup (via term [2] in Eq. (4)) significantly reduces the bias of the satellite 382 

data from 12.7 to 4.2 m.  However, the RMSE still remains sizable before (18.8 m) and after 383 

(14.3 m) the setup correction.  Subsequent corrections for monthly mean sea-level anomalies 384 
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(MMSLA), observed at the San Francisco tide-gauge station (#9414290), do relatively little to 385 

reduce the remaining bias (compare Figure 3 G and H).  The residual landward bias of the 386 

satellite-derived shoreline position can be completely eliminated by applying an additional 387 

‘water level’ correction of 
opt 12.72 =  cm, obtained via optimization.  We believe that this static 388 

correction between the GPS data and the satellite-derived data, corresponding to an effective 389 

opt 12.72 =  cm water-level difference or to a 3.5 m horizontal landward offset (as shown in 390 

Figure 3 H), may represent the ‘proxy-datum bias’ between the visual and elevation-based 391 

shoreline data (cf. Moore et al., 2006; Ruggiero & List, 2009) for Ocean Beach.  As discussed 392 

further in Appendix D and depicted in Figure 22, we believe that more than half of this 393 

remaining bias is due to mismatches in modeled and observed water level.   394 

After applying the full sequence of corrections in Eq. (4) to obtain an unbiased estimate of the 395 

satellite-derived shoreline position, the RMSE of the satellite-derived shorelines is 396 

approximately 14 m, which is equivalent to approximately half of the 30 m pixel resolution of 397 

the Landsat imagery, which also closely resembles the 15 m pixel resolution of the pan-398 

sharpened Landsat imagery used in CoastSat.  The level of accuracy, found here, is consistent 399 

with numerous previous findings (e.g., Hagenaars et al., 2017, Luijendijk et al., 2018, Vos et al., 400 

2019a,b, Nelson & Miselis 2019).   401 

In Figure 3 B, D, F, H, and J, we also report the signal-to-noise ratio (SNR), which is here 402 

defined as the ratio of the variance of the satellite-derived shoreline ‘signal’ to the variance of the 403 

‘noise’ (represented by the RMSE) and is given by 404 
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We find, as shown in Figure 3, that the complete water-level correction method (described 406 

above) triples the signal-to-noise ratio from 1.3 for raw satellite-derived shorelines to 4.2 for the 407 

fully corrected shorelines.  Furthermore, this analysis (stemming from Eq. (6)) shows that 408 

beaches that experience larger ‘signals’ of erosion and accretion will generally be more 409 

amenable to observation from satellites according to the SNR metric given here. 410 

 411 

Figure 4 – The satellite-derived shoreline error (GPS-satellite) vs. the error after different 412 

combinations of corrections.  Panel A shows the error after correcting for wave setup only. Panel 413 

B shows the error after correcting for wave setup, mean sea-level anomalies (MMSLA), and an 414 

optimized water-level correction. The swash envelope (shaded blue region) illustrates how the 415 

remaining shoreline excursions appear to be a consequence of wave swash.      416 



 

23 

 

2.3.3 The potential influence of wave swash on satellite-derived shorelines 417 

Figure 4 A compares the shoreline error (after tide correction; y-axis) to the wave setup (on the 418 

upper x-axis) and to the shoreline correction due to wave setup only (on the lower x-axis).  419 

Figure 4 B likewise compares the shoreline error (y-axis) to the complete shoreline correction 420 

(due to wave setup and water level) on the x-axis.  Notice that the best-fit relationships (red 421 

dashed lines) between the shoreline error and the shoreline correction are not exactly one-to-one 422 

(black dashed lines) for the wave-setup-only correction (shown on Figure 4 A).  However, the 423 

shoreline error and the complete shoreline correction (i.e., all terms in Eq. (4)) on Figure 4 B (red 424 

dashed lines) are nearly one-to-one (black dashed lines).  We also depict the wave-swash 425 

envelope (light blue band) on Figure 4 B, which represents the theoretical, horizontal extent of 426 

wave swash along a transect where the instantaneous swash line may occur at an arbitrary instant 427 

in time (i.e., for an arbitrary phase of the swash).  The swash envelope is centered on the wave 428 

setup,  , and the upper and lower bounds are calculated as the inverse beach slope ( 1

f
− ) 429 

multiplied by swash  , where the maximum swash excursion is calculated as swash 1.69 = , 430 

which is a consequence of the relative magnitude of the empirical swash parameterization (for 431 

dissipative beaches) of Stockdon et al. (2006), 432 

0swash 00.027 H L =   ,        (7) 433 

which is a factor of 0.027 / 0.016 1.69  larger that the empirical setup parameterization in Eq. 434 

(5).  Hence, in Figure 4 B, the swash envelope has a lower bound slope of -0.69 (which 435 

represents swash 1.69 0.69    − = − = − ) and an upper bound slope of 2.69 (which represents 436 

swash 1.69 2.69    + = + = ), and is centered on one-to-one (black dashed lines, which 437 
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represent the mean setup correction  ).  As demonstrated in Figure 4 B, most of the 438 

observations (blue dots) of the shoreline error (i.e., the difference between the ground-truth, 439 

elevation-based GPS shorelines and the image-based satellite shorelines) fall within the swash 440 

envelope, shown in light blue, which indicates that the magnitude of the post-correction residual 441 

error in shoreline position is similar with the magnitude of potential swash excursions.  Further, 442 

the analysis presented in Figure 4 B potentially explains why the largest (20 to 30 m) shoreline 443 

errors (based on the tide-only correction) are generally positive, since the upper bound of the 444 

swash envelope has a much larger slope (i.e., 2.69) than the lower bound (with slope -0.69). 445 

The strong role played by the wave setup (shown in Figure 3) and the swash envelope shown on 446 

Figure 4 suggests that time-dependent wave swash greatly influences the visual detection of the 447 

shoreline in satellite imagery.  Unlike wave setup, swash is oscillatory.  Hence, its phase cannot 448 

easily be corrected.  Therefore, the presence of sizable wave swash in satellite imagery may 449 

represent an accuracy bottleneck, which may persist despite the increasing resolution of satellite 450 

imagery.  As is a common practice in shoreline identification with ground-based cameras, a 451 

wave-height threshold might be applied to retain only the observations occurring during low 452 

wave conditions.  However, the relative infrequency of satellite revisits (especially when 453 

compared with ground-based camera observations) would perhaps demotivate the decision to 454 

favor observational accuracy over observational frequency.  In the application presented here, we 455 

do not apply a wave-height thresholding approach and instead retain all satellite-derived 456 

shoreline observations for data assimilation.  For the following large-scale modeling application, 457 

we uniformly apply the site-specific error analysis and bias correction method (described above) 458 

to the rest of the California coastline, where we have satellite data but lack traditional beach 459 

survey data.  We offer the proposed satellite-data-assimilated modeling approach as a means to 460 
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achieve reliable forecasts in otherwise ‘data-poor’ environments where in-situ observations are 461 

sparse or non-existent. 462 

3. Results 463 

3.1 Long-term shoreline change rates 464 

As a preliminary analysis, we estimate the historical rate of shoreline change by fitting linear 465 

trends to observed shoreline positions from 1995-2020. The shoreline trend analysis presented 466 

here provides a modern update, benefitting from decades of satellite-derived shoreline 467 

observations, to the historical rates for California presented in Hapke et al., (2006).  Although we 468 

apply unweighted regressions to all available shoreline observations from different sources (e.g., 469 

Lidar, GPS, satellite) at each transect, 99.9% of the observations come from satellites, hence they 470 

dominate the trend analysis, as expected.  Trends fit to satellite-derived shoreline observations 471 

have been repeatedly shown to reproduce observed trends (derived from traditional sources of 472 

shoreline data for overlapping time periods) in many different settings (e.g., Smith et al., 2021, 473 

Castelle et al., 2022).  In the current application, the shoreline trends are fit to the full set of tide-, 474 

wave- and water-level-corrected satellite-derived shoreline observations (see Section 2.3).  475 

However, Castelle et al., (2022) showed that using raw, uncorrected satellite-derived shorelines 476 

is generally sufficient for long-term trend analyses.  477 

 478 
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 479 

Figure 5 – Long-term, historical shoreline change rates ( ( )
0ltv ) for southern California (bottom 480 

panel), central California (middle panel), northern California (top panel) from 1995 - 2020 481 

(negative = erosion and positive = accretion). The colored bands identify large littoral regions, 482 

which are enclosed by harbors, headlands, river mouths, etc. 483 

 484 

Figure 5 plots the long-term shoreline change rate (in m/yr with positive and negative values 485 

indicating accretion and erosion, respectively) versus transect number.   Figure 5 is split into 486 

three portions, i.e., lower, middle, and upper, which represent southern, central, and northern 487 

California, respectively. The colored bands in Figure 5 identify large littoral regions, which are 488 

enclosed by harbors, headlands, river mouths, etc.  Across all of California, we find that 24% of 489 
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beaches have been eroding ( rate < 0.25 m/yr− ), 52% have been accreting ( rate > 0.25 m/yr ), 490 

and 24% have been stable ( rate   0.25 m/yr ).  Likewise, for southern California only, which 491 

generally exhibits more vulnerability to erosion, we find that 30% of beaches show historical 492 

erosion, 42% show accretion, and 28% have been stable.  By themselves, the shoreline trends, 493 

shown in Figure 5, do not identify the causal mechanisms of shoreline accretion or erosion. 494 

However, they do suggest a strong anthropogenic signal on the shoreline trend [as was 495 

established in Flick (1993) and Hapke et al., (2006)] in certain locations, based on evidence that 496 

the largest rates of change occur near harbors or beaches receiving significant sediment input 497 

(e.g., from fluvial inputs or nourishments).  A notable saw-toothed pattern of erosion and 498 

accretion in northern and southern portions of littoral cells, respectively, is visible throughout 499 

much of California, but is particularly evident in southern California for the Silver Strand, 500 

Mission Bay, Torrey Pines, Encinitas, Oceanside, Camp Pendleton, and San Clemente regions.  501 

This saw-toothed pattern is consistent with a mechanism of longshore transport from north to 502 

south driven by obliquely incident swell from the North Pacific, which is interrupted (but has 503 

partially bypasses) around harbors or headlands.  In central and northern California, where 504 

nourishments are rare, anthropogenic influences on the shoreline trend can still be seen at harbor 505 

entrances (e.g., in Monterey Bay, Half Moon Bay, and Humboldt).  Additionally, large signals of 506 

shoreline change (in both accretion and erosion) are visible in regions with strong fluvial 507 

sediment input (e.g., Humboldt, Orick, Klamath).  We observe the largest shoreline trends at the 508 

northern portions of Orick and Ocean Beach, with ~10 m/yr of erosion and ~ 5 m/yr of accretion, 509 

respectively.   510 
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Overall, Figure 5 demonstrates the strong signal of local shoreline trends, which is affected by a 511 

multitude of processes such as interrupted longshore transport, headland bypassing, episodic 512 

fluvial inputs, beach nourishments, etc.  The variability in local shoreline behavior show in 513 

Figure 5 also motivates the use of data-assimilation, as locally calibrated residual trends like ltv  514 

in Eq. (1) can provides a means of implicitly accounting for processes that are not easy to model 515 

or quantify explicitly.  As discussed below in Section 3.2.1 and in Appendix B.4, one quarter of 516 

the long-term linear trend ( )
0ltv  (shown in Figure 5) is used to provide initial parameter 517 

estimates for the residual trend ltv .   Using data assimilation, ltv  is further refined over the model 518 

hindcast period alongside the explicitly resolved shoreline change processes (and their associated 519 

parameters), like longshore transport, which are not accounted in the historical trend analysis 520 

(Figure 5), but are accounted for in the dynamic model (i.e., Eq. (1)). 521 

3.2 Case study: Ocean Beach 522 

In this section, we provide a case study of the data-assimilated model at Ocean Beach, San 523 

Francisco, a well-monitored beach, with a large seasonal signal of episodic erosion as well as 524 

persistent erosion and accretion trends in the southern and northern portions, respectively.  The 525 

case study, presented here, is intended to investigate the performance of the model when 526 

assimilating satellite-derived shoreline observations versus monthly GPS-derived shoreline 527 

observations (which exist here, but generally do not at other beaches). 528 

3.2.1 Model hindcast 529 

Figure 6 shows time series of wave height, observed versus modeled shoreline position, and the 530 

assimilated model parameters at transect #7991 at the southern end of Ocean Beach (which is 531 
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adjacent to the San Francisco Zoo and close to the Oceanside Water Pollution Control Plant; see 532 

Figure 7 for a map of the precise location of transect #7991). The ensemble median shoreline 533 

position and model parameters are shown with red lines in Figure 6. The pink bands in Figure 6 534 

depict the evolving uncertainty at the 95% confidence level, derived empirically from histograms 535 

of the assimilated values of the shoreline position and model parameter ensemble.  The wave-536 

height time series (Figure 6 A) demonstrates a distinct seasonal pattern of large wave heights in 537 

the winter and small wave heights in the summer.  The shoreline response (Figure 6 B), which is 538 

dominated by wave-driven/equilibrium behavior, is nicely illustrated as nearly the mirror-image 539 

of the wave height (in Figure 6 A) with erosion in winter and recovery in summer.  Figure 6 B 540 

depicts the two different kinds of shoreline observations, which represent the intersection of 541 

transect #7991 with satellite-derived shorelines (blue dots + uncertainty) or with GPS-derived 542 

mean-sea-level (MSL) shorelines (purple dots).  By comparing the assimilated model (red line in 543 

Figure 6 B) to the observations (i.e., blue and purple dots Figure 6 B), we see that the model 544 

reproduces the observed signal of seasonal shoreline change and the extents of the maximally 545 

accreted/eroded beach states in this case study.  However, we expect good performance of the 546 

model because it is assimilated, i.e., nudged toward the observations.  The time series shown in 547 

Figure 6 are split into a ‘Hindcast (Calibration)’ period (1995-2015) and a ‘Hindcast 548 

(Validation)’ period (2015-2020), where data assimilation is turned on and off, respectively.  549 

Note that the ‘Hindcast (Validation)’ is a separate test phase where the agreement between the 550 

unassisted model and the observations can provide a fair assessment of the model's skill to 551 

faithfully represent shoreline behavior recorded in observations that are previously unseen by the 552 

model (as discussed below).  Ultimately, its performance during the ‘Hindcast (Validation)’ 553 
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period is perhaps the only thing that affords confidence in the model’s predictive capabilities 554 

during projection periods (2020-2100). 555 

 556 

Figure 6 - Time series of model predictions (B) and model parameters (C-H) for transect #7991 557 

at Ocean Beach, San Francisco, California (A) Time series of daily maximum significant wave 558 
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height [m], (B) satellite observed (blue dots + uncertainty bands), in-situ GPS observed (purple 559 

squares), and simulated shoreline position, Y , (ensemble median shown in red line) and 95% 560 

confidence bands (shown in pink bands), (C-H) time series of assimilated model parameters 561 

(ensemble median in red line) and uncertainty (shown in pink bands), which are sequentially 562 

adjusted via an ensemble Kalman filter as more data are ingested into the model.  Note the 563 

dashed blue lines on panels E, G, and H represent the local mean of significant wave height time 564 

series, the local long-term linear shoreline change rate, and the initial value of the noise 565 

parameter, respectively.  The dashed black line on panel B represents the location of the non-566 

erodible shoreline on this transect.  The time series are split into a ‘Hindcast (Calibration)’ period 567 

(1995-2015) and a ‘Hindcast (Validation)’ period (2015-2020), when data assimilation is turned 568 

on and off, respectively. Note that the model parameters (C-H) remain constant during the 569 

Hindcast (Validation) period. 570 

Figure 6 C–H show time series of the assimilated model parameters including the equilibrium 571 

time-scale parameter ( T ), the equilibrium erosion length-scale parameter ( Y ), and the 572 

equilibrium wave-height parameter ( ( )
bsH ), the longshore-transport coefficient ( K ), the long-573 

term residual shoreline-change rate ( ltv ), and the additive-noise parameter (  ), respectively.  574 

Note that the entire 200-member parameter ensemble is sequentially adjusted during each data-575 

assimilation step (i.e., at the times when observations are available), which is reflected in Figure 576 

6 C–H as adjustments in the values and uncertainty bands of each model parameter. During the 577 

‘Hindcast (Validation)’ period (and for future forecast periods), data assimilation is turned off, 578 

and thus the values of all model parameters remain constant (in time, but variable in space). 579 

Ideally, when enough data are available during the hindcast period, the assimilated values of the 580 

model parameters will be sufficiently converged before the forecast period begins.  Figure 6 581 

indicates that the parameter values and particularly the uncertainty appear to converge over the 582 

course of the simulation.  As demonstrated in Vitousek et al. (2021), the evolution of the width 583 

of the uncertainty bands is set by a balancing act between the processes of additive noise and 584 

data assimilation (or damping), which expand and contract the spread of the ensemble, 585 
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respectively.  In this case, the parameter ensembles appear to converge to roughly constant-in-586 

time value toward the end of the ‘Hindcast (Calibration)’ period because the data-assimilation 587 

method (and the amount of available data) suppresses/converges the uncertainty faster than the 588 

additive noise expands it.  During the ‘Hindcast (Validation)’ and the projection periods, the 589 

process of additive noise (i.e., term 5 in Eq. (1)) is completely turned off, and thus the parameter 590 

ensemble is completely constant in time.  However, retaining additive noise after the ‘Hindcast 591 

(Calibration)’ would lead to a linear growth in the variance of the ensemble (or a square-root-592 

time growth in the uncertainty bands with time) as shown in Vitousek et al., (2021).  Note that 593 

while the parameter ensemble is held static for the projection period, the model will generally 594 

still exhibit a growth of its uncertainty bands over time, which are, for example, associated with 595 

the continuation of an uncertain/ensemble long-term trend or sea-level-driven recession 596 

coefficient (as shown in the Ocean Beach case study below), or from applied ensemble forcing 597 

conditions (e.g., ensemble wave or sea-level rise projections).  598 

Finally, we highlight a few salient features of the convergence of the model parameter ensemble 599 

as demonstrated in Figure 6.  Figure 6 F indicates that the longshore transport coefficient is 600 

rather small in this location (i.e., K  is calibrated to almost zero at this location).  The relatively 601 

small magnitude of longshore transport at this location might be controlled by a few factors: (1) 602 

most effects of longshore transport generally appear at the ends of littoral cells (e.g., Anderson et 603 

al., 2018) and this particular location is in the middle of Ocean Beach, (2) the shoreline is 604 

relatively straight in this location, and hence large gradients in longshore transport are not 605 

expected, and (3) the wave angle is predominantly perpendicular to the shoreline at this location 606 

on the southern portion of Ocean Beach, although the deep-water to nearshore wave refraction at 607 

the northern portion of Ocean Beach plays an important role in driving northward longshore 608 
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transport, as shown in Vitousek & Barnard (2015).  In the context of one-line models, the local 609 

wave angle relative to the shoreline, which is extremely important in setting the magnitude of 610 

longshore transport, can be controlled by correcting oblique offshore conditions to the local 611 

shoreline orientation (Chataigner et al., 2022) or by applying wave conditions that are very close 612 

to shore (i.e., in very shallow water).  Here, the CDIP wave hindcast (detailed Appendix C.1), 613 

which is used to propagate wave conditions to shore (i.e., up to about ~10 m depth) and is co-614 

located with the offshore ends of each transect, is a tremendous resource for the current 615 

shoreline-modeling application.  Although it has not been tested in the current application, 616 

applying linear wave theory (as in Dabees (2000), for example) or the corrections described in 617 

Chataigner et al., (2022) might account for the additional wave transformation processes taking 618 

place inshore of the wave hindcast locations.  However, the strong model performance 619 

(discussed below) for this case study suggests that additional wave transformation is generally 620 

unnecessary for the current application (given the quality and proximity of the existing CDIP 621 

wave hindcast).   622 

As mentioned above, the ensemble mean of the long-term residual shoreline change rate ltv  623 

shown in Figure 6 G is initialized to approximately one quarter of the local long-term, linear 624 

shoreline erosion rate ( )
0ltv  (shown in Figure 5), which is depicted in the blue dashed line on 625 

Figure 6 G.  We initialized the long-term rate ltv to only one quarter of the long-term rate, ( )
0ltv , 626 

because we expect that much of the ‘signal’ contained within the long-term trend, ( )
0ltv , will be 627 

parsed into the model’s explicitly resolved components of shoreline change (e.g., longshore 628 

transport).  In this case, as shown in Figure 6 G, the residual is calibrated to be approximately 629 

66% of the historical shoreline trend (up from the initial guess of 25%).  However, Figure 6 G 630 
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demonstrates how the data-assimilation method satisfactorily calibrates ltv  over the course of the 631 

simulation toward a value that is consistent with the recent shoreline trend at this location.  Note 632 

that the historical trend represents a time-averaged trend ( )
0ltv  (over the entire span of 633 

observations 1995-2020), whereas the residual term ltv  represents more of a modern trend, as a 634 

consequence of the (sequential) data-assimilation method.  635 

Figure 7 depicts observed versus modeled shoreline positions for different model configurations 636 

that assimilate the different types of data, e.g., GPS (in panel B) versus satellite-derived 637 

shorelines (in panel C) versus both types (Panel D).  Figure 7 A shows the wave-forcing time 638 

series at transect #7991, whose precise location is shown in the thick green line in Figure 7 E.  639 

As in Figure 6, the time series in Figure 7 A, B, C, and D are split into ‘Hindcast (Calibration)’ 640 

(1995-2015) and a ‘Hindcast (Validation)’ (2015-2020) periods, where data assimilation is 641 

turned on and off, respectively.  The goal of this test is to better understand the accuracy of the 642 

calibrated model when using several years of high precision, but lower temporal frequency data 643 

(e.g., monthly GPS observations) versus using several years of lower precision, but higher 644 

temporal frequency data (e.g., satellite-derived data).  With this comparison, we seek to 645 

determine if (for the purposes of model calibration) satellite-derived shorelines can be used in 646 

lieu of in-situ observations, which exist only at a handful of well-monitored beaches and are 647 

generally unavailable for perhaps over 99% of other beaches worldwide. 648 
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 649 

Figure 7 – Time series of (A) daily maximum significant wave height [m] for transect #7991 at 650 

Ocean Beach, San Francisco, California, which is indicated in the thick green line in the high-651 

resolution aerial photo shown in panel E.  The figure (panels B, C, and D) also depicts time 652 

series of satellite observed (blue dots + uncertainty bands), in-situ GPS observed (purple 653 

squares), and simulated shoreline position, Y , (ensemble median shown in red line) and 95% 654 

confidence intervals (C.I.) shown in pink bands using different types of assimilated data.  Panels 655 

B, C, and D show the model calibrated with only GPS data, only satellite-derived data, and both 656 

types of data, respectively. The time series are split into a ‘Hindcast (Calibration)’ period (1995-657 

2015) and a ‘Hindcast (Validation)’ period (2015-2020), when data assimilation is turned on and 658 

off, respectively.  In panels B, C, and D, each model achieves an RMS error of approximately 16 659 

m compared with the GPS observations during the validation period.  (Basemap is from a 660 

current, high-resolution aerial photograph of Ocean Beach available through NOAA Digital 661 

Coast).    662 

 663 
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Figure 7 B and C show marked differences in the simulated shoreline position and uncertainty 664 

(red line and pink bands, respectively) during the calibration period between assimilating GPS 665 

data (panel B) versus satellite-derived data (panel C).  In particular, in 2005 (at the onset of the 666 

regular field monitoring campaign), the GPS-data-assimilated model (panel B) becomes heavily 667 

constrained to fit the (highly accurate) observations.  The satellite-data-assimilated model (panel 668 

C), on the other hand, is adjusted more slowly/cautiously to the satellite-derived shoreline 669 

positions (blue dots) owing to their large (blue ‘whiskers’) uncertainty.  However, during the 670 

validation period, each of the calibrated models (GPS vs. satellite vs. both, shown in Figure 7 B, 671 

C, and D, respectively) demonstrate remarkable similarity, suggesting that calibrations using 672 

only satellite observations are on par with calibrations using only GPS data. 673 

Figure 8 shows the root-mean-square error (RMSE), RMSE  , defined in Eq. (2), which compares 674 

the modeled and observed shoreline positions, as a function of calibration-data type and the 675 

number of years of data.  The RMSE values reported in Figure 8 is the average across all 676 

transects within the Ocean Beach survey bounds (transect #7958 to transect #8016), during the 677 

‘Hindcast (Validation)’ period (2015-2020).  As more years of observations are assimilated, the 678 

RMSE will ideally decrease as the model becomes fully calibrated.   Note that in Eq. (2), we 679 

apply different RMSE metrics if the observations ( obsY ) during the validation period come from 680 

GPS-derived shorelines (Figure 8 A) or satellite-derived shorelines (Figure 8 B).  Figure 8 681 

indicates that assessing model accuracy during the validation period using satellite-derived 682 

shorelines (Figure 8 B) has a similar behavior (i.e., RMSE reduces as the amount of calibration 683 

data increases) to assessing model accuracy using GPS-derived shorelines (Figure 8 A).  684 

However, the assessed model accuracy is generally better when comparing the model to GPS 685 
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observations (i.e., the curves in Figure 8 A show lower error than those in Figure 8 B), likely 686 

owing to the precision of the GPS observations compared to the satellite-derived shorelines.  687 

Figure 8 establishes some consistency in model performance when either calibrating or 688 

validating it using satellite-derived shorelines versus GPS-derived shoreline observations at a 689 

highly monitored site, as described below.  690 

 691 

Figure 8 – The spatially averaged root-mean-square error (RMSE) of the model compared to 692 

observations spanning Ocean Beach during the ‘Hindcast (Validation)’ period (2015-2020) vs. 693 

the number of years of available data used during model calibration.  Panels A and B correspond 694 

to applying GPS-derived or satellite-derived shoreline for validation, respectively, during 695 

variably sized calibration periods (1995 to 1995+ x , where x  is the ‘years of available data’, 696 

plotted on the x -axis).  The figure shows different RMSE metrics when calibrating the model 697 

with GPS data only (i.e., purple squares), with satellite-derived shorelines (i.e., dark blue dots) or 698 

both (i.e., light blue diamonds).  The blacked dashed line represents a one-to-one line, in which 699 

the RMSE reduces by 1 m with each additional year of data. 700 

 701 
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Figure 8 also illustrates the differences in model RMSE when calibrating the model using 702 

different types of calibration data (GPS data only vs. Satellite data only vs. both data sets, shown 703 

in purple, dark blue, and light blue, respectively).  We also investigate the effects on RMSE as a 704 

function of the length of the calibration period, where we artificially turn off the data-705 

assimilation step prior to the ‘Hindcast (Validation)’ (2015-2020) period.  For example, 10 706 

‘years of available data since 1995’, shown on the x -axis of Figure 8, indicates a calibrated 707 

simulation from the period 1995-2005 (compared the full 20-year calibration period of 1995-708 

2015).  In all cases, we apply an unchanging ‘Hindcast (Validation)’ period of 2015-2020.  In 709 

general, as more data become available, the RMSE (shown in Figure 8) decreases, but not always 710 

consistently (often owing to the temporal inconsistency of the observations).  For example, the 711 

convergence of the GPS-calibration-data-only (i.e., purple) curves in Figure 8 demonstrates two 712 

plateaus as more years of data are added, associated with the availability of only two data points 713 

prior to the commencement of the extensive field campaign in 2005, which corresponds to 714 

isolated (Lidar) surveys in Spring 1998 and Fall 2002 (as shown in Figure 7 B).  Conversely, 715 

satellite data (blue dots) are more regularly available over the course of the entire simulation, and 716 

thus the RMSE shown in Figure 8 B drops rapidly initially, and then at a slightly slower rate 717 

thereafter.  In each case, the model RMSE decreases slightly more rapidly as modern data 718 

become available (i.e., observations collected just prior to the start of the ‘Hindcast (Validation)’ 719 

in 2012-2014, which correspond to 18-20 ‘years of available data’, respectively).  This steeper 720 

decrease in RMSE here makes sense (even though the model parameters are mostly converged at 721 

this point as shown in Figure 6) since re-initializing the model’s state (particularly the starting 722 

shoreline position) to a modern observation is important for improving model accuracy.  Using 723 

all available data, the model achieves an RMSE of approximately 16 m versus 20 m when 724 
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validating the model against GPS observations (Figure 8 A) versus when validating the model 725 

against satellite-derived observations (Figure 8 B), respectively, at this location.  Note that the 726 

reported model RMSE is only slightly higher than the RMSE of the satellite-derived shorelines 727 

themselves (i.e., 14 m) as demonstrated in Figure 3.   728 

 729 

3.2.2 Model projection 730 

 731 

Figure 9 - Time series of (A) daily maximum significant wave height [m] (left axis) and 732 

projected sea-level rise [m] (right axis) for transect #7991 at Ocean Beach, San Francisco, 733 

California, which is indicated in the bottom-most thick green line in the high-resolution aerial 734 
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photo shown in panel E.  Panels B, C, and D depict time series (at different Ocean Beach 735 

transects) of the long-term projected ensemble median shoreline position (red line), the 95% 736 

confidence intervals (C.I.) of the parametric/epistemic uncertainty (red bands) and the structural 737 

uncertainty (yellow bands), the satellite-derived shorelines (blue dots) and uncertainty bands 738 

(blue ‘whiskers’), and the in-situ GPS-observed shorelines (purple squares). Panels C, D, and E 739 

also show the location of the non-erodible shoreline (black dotted line).  The time series are split 740 

(visually, by the black vertical dashed line) into ‘Hindcast’ (1995-2020) and ‘Projection’ (2020-741 

2100) periods, where the model is calibrated/validated and run forward, respectively.  Note that 742 

the dominance of the structural vs. parametric/epistemic uncertainty is transect dependent.  743 

(Basemap is from a current, high-resolution aerial photograph of Ocean Beach available through 744 

NOAA Digital Coast).   745 

 746 

Figure 9 depicts long-term projections (up to 2100) of shoreline position and uncertainty 747 

(calibrated with all available data) for the Ocean Beach case study under future wave conditions 748 

and 1.5 m of sea-level rise.  Panels A, B, C, and D depict time series of the long-term projected 749 

wave and sea-level conditions, ensemble median shoreline position (red line), and the 95% 750 

confidence intervals of the epistemic/parametric uncertainty (shown in red bands and described 751 

in Section 2.2.2) and the structural uncertainty (yellow bands, also described in Section 2.2.2).  752 

The panels also show the satellite-derived shorelines (blue dots) and 95% confidence bands (blue 753 

‘whiskers’), and the in-situ GPS-observed shorelines (purple squares) used for model calibration 754 

during the hindcast period.  Figure 9 E shows a high-resolution aerial photograph of Ocean 755 

Beach with a map of the modeled shoreline position and uncertainty bands as well as the non-756 

erodible shoreline.  Panels C, D, and E also show the location of the non-erodible shoreline 757 

(black dotted line).  Note that, in panel D, the projected shoreline moves landward of the non-758 

erodible shoreline, indicating loss of sandy beach at this location.  Under the ‘hold the line’ 759 

scenario (described in Appendix C.3, which is not shown here), the modeled shoreline is 760 

prevented from eroding past the non-erodible shoreline and acts as if no beach sediment is 761 

available for longshore transport when the modeled shoreline is coincident with the non-erodible 762 
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shoreline.  In Figure 9, the time series are split (visually, by the black dashed line) into 763 

‘Hindcast’ (1995-2020) and ‘Projection’ (2020-2100) periods, where the model is calibrated and 764 

validated (as in Figure 7) and run forward until 2100, respectively.  Note that the model projects 765 

long-term accretion, relative stability, and erosion in the northern, central, and southern portions 766 

of Ocean Beach, respectively, that are somewhat consistent with modern shoreline trends 767 

combined with accelerated sea-level-rise-driven recession, which tends to flatten or reverse 768 

historical accretion trends.  Much like the variability in projected shoreline trends, the 769 

uncertainty bands also demonstrate marked variability across Ocean Beach.  At transect #7991 770 

(shown in Figure 9 D), the structural and parametric uncertainties are roughly the same size, 771 

which represents an ideal case: the model’s internal assessment of its uncertainty (i.e., the 772 

parametric uncertainty) is roughly equivalent to an external evaluation of its uncertainty (i.e., the 773 

structural uncertainty).  However, this is not always the case.  Instead, it is often the case that the 774 

model is either overconfident (e.g., where parametric uncertainty << structural uncertainty, as 775 

shown in Figure 9 C) or underconfident (e.g., where parametric uncertainty >> structural 776 

uncertainty, as shown in Figure 9 B).  At transect #8013 (shown in Figure 9 B), for example, the 777 

model’s large parametric uncertainty is driven by spread of the long-term, residual shoreline 778 

trend, ltv  , which is not easily constrained via data assimilation, in this case.   779 

In summary, the case study of Ocean Beach (presented here) indicates that the calibrated 780 

accuracy of the satellite-data-assimilated model is comparable to that of the GPS-data-781 

assimilated model.  This comparable accuracy (of the satellite-data-calibrated model and the 782 

GPS-data-calibrated model) increases confidence in our ability to calibrate and validate shoreline 783 

models over spatiotemporal scales using satellite data.  In the following section, we show 784 

projections of future shoreline position and uncertainty across California. 785 
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3.3 California state-wide projections 786 

Although Lidar and GPS observations of shoreline position are sparse in space and time, 787 

satellite-derived shoreline observations can span the entire California coastline and beyond.  788 

Previous studies, relying on only Lidar and GPS data (e.g., Vitousek et al., 2017), have arguably 789 

had nearly sufficient data for large-scale model calibration over large spatial scales.  However, 790 

because model calibration periods must often be long and shoreline-change time series are often 791 

sparse, very limited amounts of Lidar/GPS data (if any) remain for model validation.  Prolific 792 

satellite-derived data enable model calibration and validation over large spatiotemporal scales.   793 

 794 

Figure 10 – Spatial variability (across the state of California) in model performance metrics 795 

during the ‘Hindcast (Validation)’ period (2015-2020).  Panel A depicts the model’s root-mean-796 
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square error (RMSE)  (Eq. (2)) against satellite-derived shoreline observations; panel B depicts 797 

the index of agreement (Eq. (3)) between model and satellite-derived shoreline observations; and 798 

finally, panel C illustrates the percentage of the time that the model predictions during the 799 

validation period (2015-2020) fall within the 95% confidence bounds of the satellite-derived 800 

shoreline observations. The bottom panels show pie charts (for each of the metrics shown 801 

above), which indicate various categories of model performance and their associated percentages 802 

across the entire California model domain. 803 

 804 

Figure 10 shows the spatial variability across California of three different model performance 805 

metrics during the ‘Hindcast (Validation)’ period (2015-2020), including the (1) RMSE  (Eq. (2)806 

), (2) the index of agreement (Eq. (3)), and (3) the percentage of time that the model falls within 807 

the confidence bounds of the satellite shorelines (described below) in panels A, B, and C, 808 

respectively.  The bottom panels of Figure 10 show pie charts that indicate various categories of 809 

model performance and their associated percentages across the entire California model domain.  810 

The RMSE  (calculated via Eq. (2) and shown in Figure 10 A) applies observations ( obsY ) that 811 

come from satellite-derived shorelines, which are the only source of consistent observational 812 

data at the scale of the current analysis.  Figure 10 A indicates that, in this application, the model 813 

achieves an RMSE of <15 m for 77% of California and a mean RMSE of 12.4 m, which seems to 814 

be roughly consistent with the accuracy of the satellite-derived shoreline observations 815 

themselves.  The mean RMSE metrics across the different model transect types of “full model”, 816 

“cross-shore only”, and “rate only” are 13.3 m, 10.8 m, and 10.3 m, respectively.  However, the 817 

lower RMSE values for “cross-shore only” and “rate only” are likely due to the more limited 818 

shoreline variability of these coastal settings compared to that of the “full model” transects. 819 

The index of agreement (Willmott, 1981), given by Eq. (3), is shown in Figure 10 B.  We find 820 

that 0.5d   across 57% of California with a mean of  0.559d = .  In a recent blind-test 821 



 

44 

 

shoreline modeling competition (Montaño et al., 2020; comprised of 15 years of calibration data 822 

and 3 years of data-blind comparisons), the best performing shoreline models achieved 823 

0.5 - 0.7d  , and the performance metrics achieved here, over a vastly larger scale, seem 824 

comparably good. 825 

Lastly, the third and final metric we evaluate here is called ‘within C.I.’ in Figure 10 C, which 826 

represents the percentage of the time, during the ‘Hindcast (Validation)’ period (2015-2020), that  827 

the model predicted shoreline position falls within the 95% confidence levels of the satellite-828 

derived shoreline observations, which are assumed to be identical to sat2 , where sat  is the 14 829 

m RMSE  derived at Ocean Beach (where dense GPS observations are available) and applied 830 

uniformly across the California coast.  Although the uniform prescription of satellite-error 831 

statistics is not ideal, we note that the general 10-15 RMS accuracy of satellite-derived shorelines 832 

has been well established through extensive testing at many well monitored sites (e.g., Hagenaars 833 

et al., 2017, Luijendijk et al., 2018, Pardo-Pascual et al., 2018, Vos et al., 2019b, Castelle et al., 834 

2021, and Vos et al., 2023).  Figure 10 C indicates that the model predictions are within the 835 

confidence intervals of the satellite observations approximately 88% of the time (on average) 836 

across California. 837 

Across all skill metrics shown in Figure 10, the model seems to achieve the best performance 838 

(i.e., the lowest RMSE and the largest index of agreement) in southern California.  However, this 839 

is perhaps expected since the equilibrium shoreline-change model, i.e., Yates et al. (2009), which 840 

dominates the short-term signal of change, was conceived from local shoreline behavior and 841 

observations thereof at Torrey Pines Beach in southern California.  However, since its initial 842 

development in southern California, the Yates et al. (2009) model has been proven to be skillful 843 
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across diverse coastal settings (Castelle et al., 2014, Montaño et al., 2020, Hunt et al., 2023).  844 

Poorer model performance is generally encountered in northern California, particularly across 845 

Humboldt County, which we hypothesize is due to large signals of fluvial sediment input and the 846 

presence of large-scale sand waves (~200-1,000 m wavelength) in the region, whose dynamics 847 

are not well resolved in the context of the model governing equation.  The limited model 848 

performance, particularly in regions of high fluvial sediment input, highlights an area for 849 

improvement.  Future modeling efforts could seek to explicitly account for fluvial sediment 850 

inputs by coupling with models of terrestrial processes such as wildfire and pluvial flood events, 851 

which can significantly affect coastal sediment budgets (e.g., Warrick et al., 2022), as further 852 

discussed below. 853 

After validating the model’s performance against observed behavior, we apply the model to 854 

project future changes in shoreline position until 2100.  In particular, we explore scenarios of 855 

future beach loss (like the example shown in Figure 9 D) due to accelerated sea-level rise over 856 

the 21st century following several previous works (e.g., Vitousek et al., 2017, Le Cozannet et al., 857 

2018, Vousdoukas et al., 2020, and D’Anna et al., 2022).   Here (in Figure 11) we analyze the 858 

percentage of model transects across California that experience seasonal or persistent beach loss 859 

as a function of time and under the 9 sea-level scenarios (0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 860 

3.0 m - given in Figure 20 in Appendix C).  In Figure 11, we apply the “no hold the line” and 861 

“continued accretion” management scenario (as described in Appendix C), which represents the 862 

most conservative scenario.  However, as shown in Vitousek et al. (2017), the different 863 

management scenarios (replicated here) only result in differences of a few percentage points in 864 

the future prevalence of beach loss.  Figure 11 categorizes future shorelines into four categories 865 

and depicts how those categories change over time (panel A) or with different sea-level rise 866 
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scenarios (panel B).  The four categories, namely “wide perennial beach”, “narrow perennial 867 

beach”, “ephemeral beach”, and “persistent beach loss”, indicate increasing levels of 868 

concern/vulnerability.  The latter two categories, “ephemeral beach”, and “persistent beach loss”, 869 

are beach transects whose projected shoreline positions erode past the non-erodible shoreline 870 

(i.e., the division between sand and cliffs, dunes, or urban backshores as described in Appendix 871 

C.3) either temporarily (e.g., seasonally) or persistently, respectively, by 2100.  The first two 872 

categories, on the other hand, are mostly self-explanatory and represent either a “wide perennial 873 

beach” and “narrow perennial beach” at model transects with greater than or less than 50 m in 874 

width1, respectively, that are not projected to erode close to the non-erodible shoreline by 2100.   875 

 
1 50 m is a somewhat commonly chosen as the threshold that separates wide from narrow beaches, e.g., Vousdoukas 

et al., 2020. 
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 876 

Figure 11 – The percentage of beach loss across California as a function of time, and sea-level-877 

rise scenario of 0.5 m by 2100 (panel A) and as a function of different sea-level rise scenarios by 878 

2100 (panel B; see Figure 20). 879 

 880 

The results in Figure 11 A indicate that the number of transects experiencing “ephemeral” or 881 

“persistent” beach loss accelerates with time (due to accelerated sea-level rise).   As shown in 882 

Figure 11 B, the model projects that 13 to 61% of transects across California will experience 883 

permanent beach loss (under sea level scenarios of 0.5 to 3.0 m, respectively).  Including 884 

ephemeral/seasonal erosion increases the percentage of beaches lost to between 25 and 70% of 885 

transects across California.  Vitousek et al. (2017) projected total beach loss at 31 to 67% of 886 

southern California beaches under sea-level scenarios of 0.93 to 2 m of sea-level rise, 887 

respectively, and the (updated) projections given here across the entire state are largely 888 

consistent with these previous findings.  As in Vitousek et al. (2017), the model does not account 889 

for erosion through different substrates (e.g., rocky cliffs and concrete structures) but instead 890 
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treats the entire transect as a sandy substrate during the “no hold the line” scenario.  Clearly, this 891 

unmodified approach will generally overestimate the landward extent of erosion into cliffs and 892 

infrastructure under the “no hold the line” scenario.  However, the model predictions of sandy 893 

beach erosion extent should generally remain valid up until the beach fully erodes.   894 

The model does not explicitly account for sediment supplied to the beach from eroding cliffs, 895 

dunes, or rivers, and hence, but instead lumps all of the estimated sediment supply into the long-896 

term residual shoreline trend (e.g., ltv ), obtained via data assimilation.  Hence, the modeling 897 

approach (and the results in Figure 11) may misrepresent the episodic nature of sediment supply 898 

in some locations.  The current shoreline model could, in theory, be coupled with parameterized 899 

models of cliff erosion and/or fluvial input (e.g., Limber et al., 2018, Alessio & Keller 2020, 900 

Regard et al., 2022) to mitigate reliance on the long-term residual shoreline trend parameter (e.g., 901 

ltv ).  However, this endeavor, which has not yet been attempted in the literature, is beyond the 902 

scope of the current work and is left as future work. 903 

 904 

 905 

 906 
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 907 

Figure 12 - Shoreline modeling predictions for ~1,350 km of coastline in California produced by 908 

the current CoSMoS-COAST model. The predictions represent the shoreline position in 2100 909 

with 1.0 m of sea level rise. The yellow bands represent the projected shoreline position and 910 

(parametric) uncertainty.  Note that the transect color across the basemap of California (from 911 

Google Earth) is shown/described in Figure 2. 912 

 913 

The shoreline projections, given here, foretell potentially serious impacts for many of 914 

California’s iconic beaches as well as the economic, recreational, and protective benefits they 915 

provide.  For example, Figure 12 shows that popular beaches such as Newport Beach, Capistrano 916 

Beach, and the southern portion of Ocean Beach may experience significant erosion by 2100, 917 
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while others like Santa Monica and the northern portion of Ocean Beach are projected to accrete 918 

in spite of the impacts posed by sea-level rise.  The California statewide shoreline-change 919 

projections produced as part of this study are available via a USGS data release that accompanies 920 

this paper (Vitousek et al., 2023 [data set]). Although many of California’s beaches are 921 

vulnerable to future erosion (primarily due to sea-level rise and sediment restrictions), scenarios 922 

of future beach loss are not unique to California but may become prevalent for many coastal 923 

communities throughout the world.  However, as shown here, satellite-based shoreline 924 

monitoring and data-assimilated modeling are becoming powerful tools for prediction of coastal 925 

climate-change impacts and potentially for monitoring the effectiveness of engineering and 926 

nature-based solutions. 927 

4. Discussion  928 

Satellite-derived shoreline observations enable predictions across unprecedented spatiotemporal 929 

scales.  The proliferation of satellite-derived shoreline observations further motivates modeling 930 

approaches that can explicitly resolve variability at increasingly shorter time scales (e.g., wave-931 

driven coastal change) yet can be applied over vast, historically data-poor regions.  Additionally, 932 

increased availability of spatiotemporally dense observations will also greatly benefit long-term 933 

historical trend analyses.  Castelle et al. (2022) showed that even raw satellite-derived shorelines 934 

(which are not corrected for tide or wave setup) can reproduce long-term shoreline trends 935 

obtained from traditional methods (e.g., manually digitized shorelines from orthorectified and 936 

georeferenced aerial photographs in their study).  Avoiding the need to apply tide and wave 937 

corrections is a particularly attractive benefit to simplified shoreline-trend analysis efforts.  938 

However, tidal-prediction models, which are widely available and accurate, are already 939 
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incorporated in satellite toolboxes like CoastSat (Vos et al., 2019a), which motivates their use.  940 

Nearshore wave hindcasts, needed for wave-setup-corrections to satellite derived shorelines, are 941 

generally only available for highly developed and monitored coastlines (e.g., the CDIP hindcast 942 

– O’Reilly et al., 2016) or in deeper, offshore waters (e.g., ERA-5 reanalysis – Hersbach et al., 943 

2020).  Hence, they might represent a limiting resource for correcting satellite-derived shoreline 944 

observations.  However, as nearshore wave information is also a critical component of data-945 

assimilated shoreline model predictions, the generation of hindcasted nearshore wave data is 946 

complementary to both shoreline modeling and satellite monitoring efforts.  As both hindcasted 947 

and forecasted nearshore wave information becomes increasingly available, the prospect of 948 

operational monitoring and prediction of coastal change becomes possible.  Further, satellite-949 

derived workflows are becoming increasingly automated, in contrast to workflows relying on 950 

GPS or Lidar data.  Thus satellite-derived shoreline observations are becoming an increasingly 951 

attractive component of operational shoreline prediction systems (Vitousek et al., 2023).  The 952 

methods and models described herein might serve as an initial concept for components of a 953 

future, operational coastal-change monitoring and prediction system. 954 

 955 

For the very first time, satellite-derived shoreline observations enable validation of model 956 

predictions over large spatial scales.  Although the model, developed here, is applied over a 957 

large-scale, we believe the primary innovation of the study is that it is also validated over a 958 

large-scale (e.g., >1,000 km), which is unlike any other study to date (to our knowledge).  We 959 

believe that the satellite-based coastal monitoring renaissance may stimulate a renaissance in 960 

model prediction.   In the past few decades, innovation in coupled coastal hydrodynamic and 961 

morphodynamic models has primarily come in the form of resolving more physical processes, 962 

notably wave-driven water levels (in incident and infragravity bands; e.g., Sherwood et al., 963 
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2021).  Innovations to improve the fidelity of coastal physics-based models have had a 964 

noticeable impact on the skill of coastal-change simulations during individual storm events, but 965 

so far have arguably not had the same effect on long-term simulation of beach processes.  On the 966 

other hand, simplified, parametrized, and increasingly probabilistic coastal change models, 967 

which are most often based on the concept of ‘equilibrium’ (e.g., Wright & Short, 1985, Miller 968 

& Dean, 2004, Yates et al., 2009, Davisdon et al., 2013, Hunt et al., 2023), have provided the 969 

biggest recent innovation in prediction of long-term (e.g., multi-annual to decadal+) coastal 970 

change.  Although both physics-based and parameterized (reduced-complexity) coastal-change 971 

models will benefit from increased availability of observations, we believe the simplified models 972 

will receive the greatest returns from data-integration efforts for a number of different reasons: 973 

(1) simplified models can be readily calibrated to real-world, site-specific shoreline observations 974 

in contrast to more expensive, monolithic models, which also require full bathymetric and 975 

topographic surveys for validation, (2) simplified models, mainly due to their significantly 976 

shorter runtimes, can be readily applied in a probabilistic sense (e.g., using Monte Carlo 977 

methods), and thus will excel in propagating, quantifying, and balancing uncertainty (in both 978 

modeling and observational components) in contrast to more expensive and consequently more 979 

deterministic models, (3) simplified models can be readily adapted to produce multi-model 980 

ensemble predictions, and (4) simplified models are amenable to data-assimilated operational 981 

modeling (e.g., based on ensemble Kalman filter methods) as well as scenario-based modeling of 982 

future coastal change.   983 

The hybridization of models and observations for coastal-change prediction is becoming 984 

increasingly viable because of earth-observing satellites.  For the first time, satellites can provide 985 

coastal data at the scales of models and models at the scales of data (Vitousek et al., 2023).  And 986 
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eventually, with perhaps another decade of research and development, the field could develop 987 

coupled monitoring and modeling systems at national to global scales. 988 

In the current application, the developed CoSMoS-COAST model achieves an average RMSE of 989 

~12 m, obtained by comparing model versus satellite-derived observations during a validation 990 

period of 2015-2020, averaged over the entire California coastline.  We consider this level of 991 

accuracy to be quite remarkable (given the scale of shoreline projections in the current 992 

application) since the model’s performance metrics seem to be on par with the performance 993 

achieved in notable, site-specific modeling applications (e.g., Montaño et al., 2020).  994 

Furthermore, the accuracy of the model seems to be on the same order of the accuracy of the 995 

satellite observations themselves.  It is quite likely that the model’s RMSE is even lower than the 996 

numbers reported here (in Figure 10) due to the limited accuracy of the satellite-derived 997 

shorelines used for validation.  However, this is only a speculation, as no other (non-satellite) 998 

observations exist over equivalent spatiotemporal scales to verify these potential gains in 999 

accuracy.  In support of this notion, we turn to the case study at Ocean Beach, a relatively limited 1000 

area covering ~5 km of coast, but where monthly data have been collected over 2 decades. In the 1001 

case study, presented here, for the 5-year validation period from 2015 to 2020, the model’s error 1002 

is ~15-20% higher (~3-4 m higher RMSE) when using satellite-derived shoreline observations 1003 

for validation than when using highly accurate GPS observations for validation (see Figure 8 1004 

panels A vs. B).  1005 

Even though the satellite-data-calibrated model is roughly as accurate as the GPS-data-calibrated 1006 

model, the model is still not perfect.  It is possible that the post-calibration inaccuracies of the 1007 

model may have more to do with the limitations of model itself rather than the quality/quantity of 1008 



 

54 

 

calibration data or lack thereof (especially when two decades of calibration is applied).  For 1009 

example, non-stationarity in the shoreline model parameters, i.e., the potential for model 1010 

parameters to change over time (e.g., Ibaceta et al., 2020), which is not accounted for here, may 1011 

lead to drifts between model projections and the real world.  Additionally, although the model is 1012 

proven to be capable of resolving important signals of coastal change, it does not explicitly 1013 

capture a number of important coastal change processes such as the formation and evolution of 1014 

large-scale (~200-1,000 m) sand waves, fluvial-discharge events, cliff/bluff failures, headland 1015 

bypassing, or other processes that can cause either pulses/shocks of coastal change or slow-1016 

varying, atypical oscillations.  However, these issues are certainly not unique to the current 1017 

model but persist for nearly all flavors of coastal-change models due to the dogged complexity of 1018 

nearshore and subaerial sediment transport.  Despite some of the recent improvements adopted in 1019 

the latest CoSMoS-COAST model (including the changes in the governing equations and the 1020 

adoption of an ensemble-based approach as described in Vitousek et al., 2021 as well as the data-1021 

assimilation advancements detailed in Appendix B), the physics of the current modeling 1022 

application is nearly identical to the initial model development (Vitousek et al., 2017). The three 1023 

most significant developments of the modeling efforts presented here are: (1) the scale of the 1024 

model (i.e., southern California vs. all of California), (2) the integration of satellite-derived 1025 

shoreline observations, and (3) the novel data-assimilation method.  Further, these developments 1026 

are complementary: the scale of data-assimilated modeling efforts is tightly linked with the scale 1027 

of available data.  We believe it is these three developments (and not really any improvement in 1028 

the model physics) that have enabled better predictions (e.g., assimilating far more observations 1029 

across much larger scales) over previous works. 1030 
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Although the physics captured in the governing equations of the present model are mostly 1031 

adequate to capture the dominant beach processes in California, numerous improvements might 1032 

still be integrated into the current model.  We suggest that an important component of coastal 1033 

change that is not resolved explicitly in the California model is sediment flux from terrestrial 1034 

sources, notably rivers.  Warrick et al.’s (2022) “Fire plus flood equals beach” (using the same 1035 

CoastSat-derived shoreline observations) analyzed beach accretion events at Big Sur, California 1036 

following record-setting precipitation events, which followed a wildfire that burned 66% of the 1037 

adjacent watershed.  Warrick et al.’s (2022) paper was one of the first attempts to estimate the 1038 

fluvial portion of a littoral sediment budget using satellite-derived shoreline observations.  A 1039 

modeling effort to better quantify fluvial sediment input to the coast as a function of 1040 

terrestrial/watershed processes, while accounting for its significant temporal variability (East et 1041 

al, 2018), is a particularly compelling endeavor and it could possibly be scaled up over the size 1042 

of the U.S. West Coast (or even worldwide).   Although the current shoreline model is only 1043 

forced by nearshore hydrodynamic processes, it could possibly be extended to explicitly account 1044 

for fluvial/terrestrial processes via coupling with terrestrial models.  For example, future research 1045 

might identify signatures of fluvial-discharge events and/or beach nourishments in satellite-1046 

derived shoreline observations (e.g., via machine learning) and subsequently parameterize or 1047 

calibrate their occurrence (in both a hindcast and forecast sense with the aid of terrestrial-process 1048 

models and GCM projections).   The alternative approach (used here), to model fluvial, 1049 

anthropogenic, or unresolved processes implicitly via a residual, linear shoreline-change rate (see 1050 

term 3 in Eq. (1)), which can mask chronic erosion of nourished beaches (Armstrong & Lazarus, 1051 

2019), was previously taken out of necessity, given the sparsity of coastal observations.  1052 

However, with the increasing availability of satellite-derived shoreline observations, the 1053 
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motivation to explicitly resolve both the nearshore hydrodynamic and terrestrial components of 1054 

coastal change substantially increases.  In California, in particular, the sources and magnitudes of 1055 

sediment input remain critical gaps in littoral sediment budgets and in the long-term survival of 1056 

beaches (particularly those in natural settings) in response to sea-level rise (Warrick et al., 2023).  1057 

In highly urban settings/environments (which are generally without significant fluvial-sediment 1058 

input), we believe that the survival of beaches in urban environments will increasingly rely on 1059 

beach nourishment and/or sand retention (Griggs et al., 2020).  Yet, better satellite observations 1060 

(with increasingly higher image quality and quantity) and better satellite-data-assimilated 1061 

modeling predictions (such as those developed in the current paper) will be critical to design and 1062 

monitor the effectiveness of engineering interventions and nature-based solutions.  1063 

 1064 

5. Conclusions 1065 

We have developed and applied a large-scale, long-term shoreline change modeling system 1066 

across 1,350 km of coast in California, home to a variety of different coastal geomorphic 1067 

settings.  For the first time, the model assimilates data from satellite-derived shoreline 1068 

observations (derived from the CoastSat toolbox), providing a thousand-fold increase in 1069 

assimilation data over traditional Lidar and GPS shoreline observations across the California 1070 

coastline.  In a case study at Ocean Beach, California, where extensive in-situ field monitoring 1071 

efforts have taken place, we demonstrate that the assimilation of satellite-derived shorelines 1072 

provides comparable predictive accuracy to a model with decades of monthly in-situ surveys.  1073 

This case study provides confidence that satellite-derived shorelines, available anywhere in the 1074 

world, can be used to calibrate and validate models of coastal change. Across California, during 1075 
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a validation period of 2015-2020, the model achieves an average RMSE of ~12 m and an index 1076 

of agreement of 0.54 when compared to satellite observations.  The assessed accuracy of the 1077 

California model is comparable to many state-of-the-art blind tests of multi-model shoreline 1078 

prediction capabilities at well-monitored individual sites elsewhere in the world (e.g., Montaño 1079 

et al., 2020).  The model predictions, although subjected to considerable uncertainty, indicate 1080 

that significant impacts to the shoreline may occur due to accelerated sea-level rise, with 25 to 1081 

70% beaches across California lost by 2100 under the 0.5 to 3.0 m SLR projections. It is likely 1082 

that many beaches in California will require substantial management efforts (e.g., beach 1083 

nourishments, sand retention, armoring, dune restorations as well as other engineering and 1084 

nature-based solutions) in order to maintain existing beach widths and the many services they 1085 

provide. 1086 
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Appendix A: Numerical model  1104 

This appendix details the numerical solution of the governing equation of the CoSMoS-COAST 1105 

model, Eq. (1), which closely follows that of Vitousek et al., 2017. 1106 

A.1.1 Longshore transport 1107 

The first term on the right-hand side of Eq. (1) is the alongshore convergence of the longshore 1108 

sediment transport, where Q  is the longshore sediment-transport rate, X  represents the 1109 

alongshore coordinate, and cd  is the depth of closure.  A generalized expression for the 1110 

longshore-transport rate is 1111 

      ( )0 sin 2Q Q = ,     (8) 1112 

where 0Q  represents the magnitude of the longshore sediment-transport rate derived empirically 1113 

and expressed as a function of wave and sediment properties (e.g., CERC (1984); Kamphuis 1114 

(1991)).  In the current implementation, we approximate the magnitude of the longshore-1115 

transport rate as 2

0 sQ KH , where sH  is the significant wave height at the offshore endpoint of 1116 

http://coastsat.wrl.unsw.edu.au/
https://drive.google.com/drive/folders/1ipaiW9ap9TMJvF-qUQBRTh3CBM6gtO1x?usp=share_link%20
https://drive.google.com/drive/folders/1ipaiW9ap9TMJvF-qUQBRTh3CBM6gtO1x?usp=share_link%20
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each model transect (which is calculated via nearshore wave models as described below in 1117 

appendix C.1), and K  is an aggregated parameter that is determined via data assimilation. The 1118 

argument of Eq. (8), wave shoreline  = − , represents the relative angle (in Cartesian convention) 1119 

between the incident waves (with incoming direction   in Nautical convention, which 1120 

corresponds to a Cartesian angle wave 270 = −  as shown in Figure 13) and the shoreline angle, 1121 

shoreline  (Larson et al., 1997).  The shoreline angle is given by  1122 

      
shoreline atan

y

x


 
=  

 
,       (9) 1123 

where x  and y  represent the real world (e.g., Universal Transverse Mercator - UTM) Cartesian 1124 

coordinates of the shoreline, and 1/2 1k k kxx x+ + −=  and 1/2 1k k kyy y+ + −=  represent the 1125 

differences (in easting and northing, respectively) between the shoreline-position coordinates on 1126 

adjacent transects (as shown in Figure 13).  Note that some variables exist on directly on the 1127 

transects themselves (with integer values of subscripts k ) and some variables exist at the 1128 

midpoints between transects (with values 1/ 2k + ).  When necessary, we apply one-dimensional 1129 

(1-D) linear interpolation to translate variables from transects to midpoints and vice versa. 1130 

The model does not consider high-angle wave instability and the growth of shoreline features 1131 

such as spits, sand waves, and capes (e.g., Ashton et al., 2001; Falques, 2003; van den Berg et 1132 

al., 2012; Kaergaard and Fredsoe, 2013; Roelvink et al., 2020), which can lead to multivalued 1133 

solutions to the shoreline position, Y , at a specific time.  Further details on the longshore-1134 

transport component of the model are given in Vitousek et al. (2017). 1135 
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 1136 

Figure 13 - Schematic showing the setup and some important variables of the transect-based 1137 

CoSMoS-COAST model. 1138 

A.1.2 Shoreline recession due to sea-level rise 1139 

The second term on the right-hand side of Eq. (1) models shoreline recession due to sea-level 1140 

rise ( S ).  The tan  is the so-called the “transgression slope” (e.g., Wolinsky & Murray 2009), 1141 

which represents the ratio of sea-level rise and the shoreline recession.  The transgression slope 1142 

is typically approximated using beach profile geometry.  When tan   is chosen as the foreshore 1143 

beach slope or the inland beach slope (e.g., Wolinsky & Murray 2009), this term represents the 1144 
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shoreline recession in response to passive flooding.  When the transgression slope is chosen as 1145 

the average slope of the active beach profile extending to the depth of closure (commonly 1146 

denoted as tan ), term [2] on the right-hand side of Eq. (1) represents the “classic Bruun rule” 1147 

(Bruun 1962).  The Bruun rule is widely used (Bruun, 1988) and modified (Davidson-Arnott, 1148 

2005; Wolinsky & Murray, 2009; Rosati et al., 2013; Young et al., 2014; Anderson et al., 2015, 1149 

Davidson-Arnott & Bauer 2021), yet widely criticized (Cooper & Pilkey, 2004; Ranasinghe et 1150 

al., 2012; Cooper et al., 2020) as an oversimplification of shoreline evolution.   In the current 1151 

implementation, the additional terms on the right-hand side of Eq. (1), e.g., terms [1] and [3]-[5], 1152 

are intended to capture the processes missing from stand-alone applications of the Bruun rule.  1153 

Despite criticism of the Bruun rule, there model remains widely used because there is "no 1154 

simple, viable alternative" to it (Rosati, 2013).  However, recent work (D’Anna et al., 2021b) 1155 

proposed that the recession mechanism of the Bruun rule can be separated into two components: 1156 

(1) shoreline recession due to passive flooding and (2) shoreline recession due to wave 1157 

reshaping, which represents the cumulative effect of increased wave-driven erosion efficiency on 1158 

a beach profile with an elevated sea-level state, which is captured via “equilibrium” shoreline-1159 

change theory in the fourth term on the RHS of Eq. (1).  Recent validation studies of the Bruun 1160 

rule have been carried out in both laboratory (Atkinson et al., 2018) and field (Troy et al., 2021, 1161 

Davidson-Arnott & Bauer 2021) settings, which motivate the inclusion on the Bruunian 1162 

shoreline recession model (along with an accompanying calibration coefficient c  obtained from 1163 

data assimilation) in the current application.  Perhaps the biggest uncertainty in the application of 1164 

the Bruun rule, is: what is the most appropriate “transgression slope” to apply?  As in Vitousek et 1165 

al. 2017, we apply a transgression slope ( tan  ) that represents the foreshore beach slope 1166 

between approximately -2.0 and +2.0 m around mean sea level, which translates to roughly a 1167 
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1/32 slope, when spatially averaged.  However, in different coastal environments this 1168 

transgression slope may differ significantly from that used here.  1169 

A.1.3 Long-term shoreline trend 1170 

The third term on the right-hand side of Eq. (1) is the long-term, residual shoreline trend that 1171 

represents persistent processes such as sources and sinks of sediment from fluvial inputs (Inman 1172 

and Jenkins, 1999; Willis and Griggs, 2003; Warrick and Mertes, 2009), nourishments (Flick, 1173 

1993), cliff-failure (Young et al., 2011; Limber and Murray, 2011), aeolian transport (Bauer et 1174 

al., 2009), sand mining (Thornton et al., 2006), and transport from offshore (Schwab et al., 1175 

2013).  Regions dominated by these unresolved, residual effects will have locally high values of 1176 

ltv .   1177 

In Eq. (1), if the long-term trend, ltv , is a constant, then the shoreline migration is linear in time.   1178 

Shoreline-change analyses using historical aerial photos often use linear regressions to fit 1179 

observed shoreline data and determine long-term annual erosion rates (e.g., USGS National 1180 

Assessment of Shoreline Change - Hapke et al., 2006).  The data-assimilation method assumes 1181 

that ltv  is constant, with initial value that is proportional to the linear regression rate ( )
0ltv .  1182 

However, when each data-assimilation step takes place, the magnitude of ltv  changes and thus 1183 

the unresolved, long-term shoreline change is time-dependent.  During the model forecast period 1184 

when there are no observations available to assimilate, ltv  remains constant (as set by the 1185 

sequential data-assimilation method at the end of the calibration period), and therefore the 1186 

unresolved, long-term shoreline change associated with this term is linear in time. Consequently, 1187 
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the long-term component is subject to error when chronic, unresolved processes result in a 1188 

nonlinear, future shoreline response (Armstrong & Lazarus 2019).   1189 

A.1.4 Wave-driven cross-shore equilibrium transport 1190 

The fourth term on the right-hand side of Eq. (1) represents the Yates et al. (2009) equilibrium 1191 

shoreline model that simulates episodic beach erosion and recovery during periods of high and 1192 

low waves, respectively. Vitousek et al. (2021) reformulated the Yates et al. (2009) model to 1193 

introduce parameters with intuitive meanings and dimensions (e.g., length or time), while 1194 

retaining exactly the same model dynamics.  In Eq. (1), the equilibrium shoreline position is 1195 

given by 1196 

( )

( )

22

2eq

s s b

s b

H H
Y Y

H

−
= −          (10) 1197 

and the equilibrium time scale is given by   1198 

( )

1

s b

sH
T

H


−

 
=   

 
 

          (11)1199 

where ( )s b
H , Y , and T , are free parameters, detailed in Vitousek et al. (2021) and briefly 1200 

summarized below.  In Eqs. (10)-(11), ( )s b
H  is the background wave-height parameter, which 1201 

bears a close resemblance to the average of the wave-height time series.  The term Y  is the 1202 

characteristic cross-shore erosion/accretion length-scale parameter, which is typically 1203 

(1 10 m)−O , and T  is the background equilibrium time-scale parameter, whose magnitude is 1204 

typically on the order of several weeks.  Note that, in Eq. (11), the instantaneous time scale   1205 
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effectively becomes longer or shorter than the background time scale T  during small or large 1206 

wave conditions, respectively, relative to the background wave height.  1207 

A.2 Spatial discretization (model transects) 1208 

In the proposed model, the coastline is discretized into a series of nodes that exist on shore-1209 

normal transects that are arbitrarily spaced in the alongshore direction.  For each transect, the 1210 

shoreline position at a given time step is measured by the distance, Y , from the onshore end of 1211 

the transect.  The model computes the evolution of Y  for each transect.  Accordingly, the 1212 

shoreline evolves as if “on rails” represented by each transect.  A schematic of the model domain 1213 

is shown in Figure 13.   Although there are long-term coastal evolution models that are grid 1214 

based (e.g., the Coastal Evolution Model (CEM) – Ashton & Murray, 2006, LX-shore – Robinet 1215 

et al., 2018) and vector-based (Hurst et al., 2015) or free-form (Roelvink et al., 2020), the current 1216 

model is chosen to be transect based to cover long, irregular coastlines and facilitate the 1217 

composition of the 1-D, process-based models (described above) with data assimilation.   1218 

For the current application, the domain is discretized into 11,539 transects spaced approximately 1219 

100-200 m apart (Figure 2).  Each transect is assigned a designation of either “full model”, 1220 

“cross-shore only”, “rate only”, “cliff only” or “no prediction” based on geologic characteristics 1221 

(which occur for 31.9%, 18.2%, 30.6%, 12%, and 7.3% of the California coastline, respectively).  1222 

Based on the transect designation, the shoreline model retains or neglects certain physical 1223 

processes and the corresponding terms in the governing equation, Eq. (1).  As the name implies, 1224 

transects designated as “full model” evolve the shoreline using the full governing equation, Eq. 1225 

(1).  “Full model” transects are selected for long, sandy beaches, and all model components are 1226 

included.  Small (< 1 km), sandy barrier islands or pocket beaches are designated as “cross-shore 1227 
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only” by setting 0K = .  The model also designates cobble beaches and heterogeneous 1228 

sandy/rocky beaches as “rate only” transects by neglecting longshore and cross-shore transport 1229 

due to waves, i.e., setting 0K =  and 0Y = . These transects evolve the shoreline using a linear 1230 

change rate (obtained via data assimilation) plus a recession rate due to excess passive flooding 1231 

above the current rate of SLR (Anderson et al., 2015).  Finally, “cliff only” and “no prediction” 1232 

transects represent sea-cliffs (without fronting beaches) or armored shorelines, respectively, 1233 

where no model calculations are performed.   1234 

 1235 

A.3 Temporal discretization 1236 

The model uses explicit Euler time stepping (e.g., Moin, 2010) for the cross-shore transport 1237 

terms due to waves, sea-level, and long-term effects.  However, these terms generally do not 1238 

exhibit much susceptibility to numerical instability.  The longshore-transport term, on the other 1239 

hand, is susceptible to numerical instability based on the Courant number condition 
2

04

cd

Q

X
t


   1240 

(Ashton & Murray, 2006; Vitousek & Barnard, 2015).  Hence, the transect spacing, X , is 1241 

generally the most important consideration in selecting the preferred model time step.  In 1242 

general, explicit Euler time stepping suffices for transects spaced approximately 50 m or greater.  1243 

To avoid potential numerical instability the model optionally uses a split-explicit method (e.g., 1244 

Debreu et al., 2012) to subcycle the longshore-transport term with an integral time-refinement 1245 

factor.  1246 

 1247 

 1248 
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A.4 Split model equations 1249 

To facilitate model construction and data assimilation, Eq. (1) is split into individual components 1250 

of shoreline change lstY , bruY , vltY , and, stY , which represent shoreline change components on 1251 

each individual transect driven by the individual terms [1]-[4] in Eq. (1).  The total shoreline 1252 

position is given as  1253 

lst bru vl st 0tY Y Y Y Y Y= + + + +   ,      (12) 1254 

where 0Y  is the initial (observed) shoreline position. 1255 

This splitting procedure ensures that the equilibrium shoreline position, 
eqY , given in Eq. (1), is 1256 

correctly associated with the variability of the short-term shoreline position, stY , following Long 1257 

& Plant (2012).  Further, this splitting procedure allows easy identification of the dominant 1258 

components involved in the overall coastal change.  1259 

The split model equations become 1260 

( ) ( )

( )

1

lst lst 1/2 1/21
n n

n n

k k k k

c kk

Y Y Q Q

t d X

 
+

+ +

+ −
− −

= −
 

   (13)1261 

( ) ( )
1

bru bru
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n n n

k k k

kk

Y Y c S

t t

+
−  

= −  
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    (14) 1262 

( ) ( )
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1
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n n
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( ) ( )
( ) ( )( )

1
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1
n n

n nk k

kk
k

Y Y
Y Y

t 

+
−

= −


    (16)  1264 
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where superscripts n  represent the time-step index, t  is the time step, k  represents the transect 1265 

index, and kX  the distance between adjacent transects.  In Eq. (13), the superscript variable 1266 

0 =  or 1 =  represents the use of explicit versus implicit time stepping, respectively, 1267 

following the method of Vitousek & Barnard (2015).  All of the model parameters and variables 1268 

in Eqs. (13) - (16) are defined at each transect (with index k ) except the longshore transport rate, 1269 

Q , which is located between adjacent transects (with indices 1/ 2k  ).  Although the splitting 1270 

procedure in Eqs. (13) - (16) seems to result in an “uncoupled” model, the model still accounts 1271 

for feedbacks between the individual shoreline components since the longshore-transport term 1272 

(see Eqs. (8) - (9)) is calculated using the shoreline angle associated with the full shoreline 1273 

position Y . 1274 

Appendix B: Data assimilation 1275 

The original data-assimilation method used in CoSMoS-COAST (Vitousek et al. 2017) operated 1276 

independently for each transect.  Here, we develop novel data-assimilation method (described in 1277 

this appendix) that uses all observations within a littoral cell (at a given time step) to assimilate 1278 

the model parameter values for all transects within that littoral cell.  To accomplish this, the data 1279 

assimilation method uses a global state vector (containing all state variables/parameters) rather 1280 

than a local (transect specific) state vector as described in B.1, combined with a novel 1281 

localization method described in B.3. 1282 

B.1 Model state vector 1283 

Data assimilation automatically adjusts the model state (i.e., the model solution and parameters) 1284 

during runtime to best fit any available observed data at the concurrent time step.  In the current 1285 
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application, the state vector representing the model solution and parameters (at a given transect 1286 

k ) that is adjusted via data assimilation is given by 1287 

 ( ) ( ) ( ) ( )lst st lt
ˆ

k k s k kk k kk
k

T

kY Y T Y H c Kx v  =  
 

.   (17) 1288 

Eq. (17) includes the important model parameters and two model solution variables ( lstY  and stY ) 1289 

for a total of var 9N =  variables, in this case.  Note that, in the context of the current model, the 1290 

assimilation of any parameter in the state vector in Eq. (17) can be effectively turned off by 1291 

removing the variance of that parameter across the ensemble (i.e., by applying a constant value 1292 

of the model parameter), which implies perfect confidence in the value of that parameter.  1293 

Although the total shoreline position (given in Eq. (12)) is composed of other components, i.e.,  1294 

bruY , and vltY , we do not seek to assimilate (i.e., adjust) the values of these components, since, 1295 

according to Eqs. (14) and (15), they represent quasi-deterministic model components (i.e., they 1296 

are generally monotonic and their governing equations allow them to be uniquely determined 1297 

from independent variables such as the amount of sea-level rise or time, respectively) rather than 1298 

dynamic components (like lstY  and stY ).  Note, however, that the model parameters like c  and ltv  1299 

that influence the evolution of Eqs. (14) and (15) are assimilated. 1300 

Eq. (17) presents a slight simplification of the state vector used in CoSMoS-COAST.  As 1301 

discussed in Vitousek et al. (2017), the native data-assimilation method does not guarantee that 1302 

the model parameters retain their requisite sign (for example, ˆ, , , , ,sT Y H c K    are positive 1303 

quantities).  Hence, we modify the state vector slightly (following Vitousek et al., 2017) to 1304 

assimilate the natural logarithm of positive-valued model parameters, which are then converted 1305 

(via the exponential function) back to its original form following the data assimilation step. 1306 
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Following Eqs. (13) - (17), the evolution equation of the state vector is given by 1307 

( )
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f    (18) 1308 

Eq. (18) has zero right-hand-side terms, 0
x

t


=


, for the evolution of the seven model parameters, 1309 

lt
ˆ, , , , , ,sT Y H c v K   , that represent spatially-variable, yet temporally-constant coefficients, 1310 

which are updated at each data-assimilation step.  Note that in Eq. (18), terms with superscript n  1311 

(i.e., 
nQ +

 and ( )eq

n

Y , which are functions of the wave forcing conditions, ( )
n

sH ) are variable in 1312 

time.  On the other hand, terms without superscript n  are assumed to be constant with time in the 1313 

absence of data assimilation (e.g., 
lt

ˆ, , , , , ,sT Y H c v K    as well as the unassimilated parameters 1314 

cd  and tan  ), although in reality the processes that these parameters seek to represent can 1315 

exhibit some variability in time, inevitably resulting in model error.  For the original CoSMoS-1316 

COAST model (Vitousek et al., 2017), the data-assimilation method in Eq. (18) took place 1317 

independently for each transect k , meaning that the model for a given transect only accounted for 1318 

shoreline observations falling on that individual transect at that instance in time.  The current 1319 

method, however, assimilates an augmented state vector ax  for all transects that is given by 1320 
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tr1 2 1

T
T T T T T

a k k Nx x x x x x+
 =      (19) 1321 

The (global) augmented state vector ax  (which is of size ( )tr var 1N N  ) in Eq. (19) contains the 1322 

var 1N   state vectors (with var 9N = ) given in Eq. (17) for all ( trN ) model transects.   1323 

It is often desirable to assimilate site-specific behavior from site-specific observations.  1324 

However, assimilating each transect independently does not leverage the spatial coherence that 1325 

exists between adjacent observations.   As discussed below in Section B.3, we seek a 1326 

compromise between data quantity and data locality by implementing a so-called ‘localization’ 1327 

method to prioritize assimilation of coincident and neighboring observations. 1328 

B.2 Ensemble Kalman filter data-assimilation method 1329 

Here, we utilize an ensemble Kalman filter (EnKF) data-assimilation method following Evensen 1330 

(1994).  The EnKF data-assimilation method evolves an ensemble of the (augmented) model 1331 

state vector,  1332 

( ) ( ) ( )
ens1 2a a a N

x x x =
 

x ,    (20) 1333 

where each (augmented) state vector ax  of the ensN  member ensemble contains the combination 1334 

of the model solution and parameters (as in Eqs.  (17) and (19)).  Note that throughout this 1335 

appendix, boldfaced quantities (e.g., x ) indicate an ensemble quantity or matrix (with 1336 

dimensions provided where possible).  The assembly of the model state vector ensemble (i.e., 1337 

Eqs. (17), (19), and (20)) is illustrated in Figure 14.  1338 
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The EnKF method sequentially adjusts the model state during the simulation to best fit any 1339 

available shoreline observations at the concurrent time step, via an optimal interpolation that 1340 

accounts for the uncertainty of both model and observations.  The procedure of the data-1341 

assimilation method is given by: 1342 

1. Run the forward model with added noise:   1343 

( )*

mod

n= +x x εF           (21) 1344 

where *
x  is the ( )( )tr var ensN N N   ensemble of the forecasted state vector (e.g., Eq. (17)1345 

), n
x  is the ensemble of the model state vectors at time step n ,  F  is the operation of the 1346 

(forward) model for a single time step (i.e., ( )n n nt= +xF fx  where n
f  is given in Eq. 1347 

(18)) and ( )2

mod ~ 0,ε N  is a sample of random, normally-distributed noise with zero 1348 

mean and user-prescribed standard deviation   , which can vary for each parameter and 1349 

is added to the model forecast.  Vitousek et al. (2021) demonstrated that the additive 1350 

noise parameter   plays an extremely important role in the specification of the epistemic 1351 

uncertainty (i.e., the user-specified accuracy limits of the model). 1352 

In the absence of data to assimilate, 1 *n+ =x x , and the inverse model (i.e., the data-1353 

assimilation method computed via steps 2-5 below) is not computed, and the model state 1354 

vector at time step 1n+  is simply that which is predicted by the (forward) model.  In the 1355 

current application, when data are no longer available to assimilate (i.e., during a forecast 1356 

period), then modε  is set to zero, and the ensemble is propagated forward without additive 1357 

noise, ( )1n n+ =x F x , as is nominally the case for unassimilated models. 1358 
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2. Calculate the background model ( *
X ) and (model-predicted) observation ( *

Y ) anomalies 1359 

about the ensemble average, according to 1360 

* * *= −X x x           (22) 1361 

* * *= −Y y y            (23) 1362 

where *
x  and *

y  are the ensemble averages of *
x  and 

*
y , respectively.  In Eqs. (22) and 1363 

(23), *
X  and *

Y  are ensembles of size ( )tr var ensN N N   and obs ensN N , respectively, 1364 

where obsN  is the number of transects with observations to assimilate at a given time 1365 

step.  It is important to note that here the variable 
*

y  does not represent actual 1366 

observations.  Instead, ( )* *H=y x  represents the ensemble of model-predicted variables 1367 

that coincide with the observed variables (e.g., at their given spatial locations), where H  1368 

is an interpolation operator that ensures that the model output and observations are co-1369 

located. 1370 

3. Calculate the combined error covariance matrix 1371 

( ) ( )* * *

observationens
covariance 

matrix(inflated) model 
covariance 

matrix

1
cov

1

T

N
 
 

= + = + 
− 

P Y Y R y R      (24) 1372 

which is a obs obsN N  matrix that represents the sum of the covariance of the model error 1373 

and the observation error, where   is a so-called ‘covariance inflation factor’ (typically 1374 

chosen to be 1.1 = , as is the case here) and R  is the obs obsN N  covariance matrix of 1375 
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observation error.  Here we apply the approximate error covariance matrix ( =R R ) 1376 

derived below in Eq. (34) of Section B.5.  The weighting between model and 1377 

observations (which accounts for the uncertainty of each source of error) is calculated 1378 

below in Eq. (25).  Compared with the extended Kalman filter (EKF) approach (used in 1379 

Long & Plant, 2012, and Vitousek et al., 2017), Eq. (24) replaces the analytical derivation 1380 

and advancement of the error covariance matrix P , which is calculated from the Jacobian 1381 

matrix (i.e., the matrix of partial derivatives) of the forward model F .  Hence, the EnKF 1382 

method requires very little computational overhead and no analytical work to derive the 1383 

Jacobian matrix, in contrast to the EKF method.  However, the EnKF method does 1384 

require running an ensemble of models as opposed to running a single model realization 1385 

using the EKF.  Running a model ensemble certainly increases the computational 1386 

requirements, but it also enables modeling of a range of model parameters and forcing 1387 

conditions, and thus a better accounting of uncertainty, which is often a desirable feature. 1388 

4. Calculate the so-called ‘Kalman gain’, K , according to  1389 

( )* * 1

ens

1

1

T

N

−=
−

K X Y P         (25) 1390 

Here, K  is a ( )tr var obsN N N   matrix (recalling that trN  is the total number of model 1391 

transects to assimilate, varN  is the number of variables in the assimilated state vector [Eq. 1392 

(17)], and obsN  is the number of transects with observations to assimilate at the current 1393 

time step).  Eq. (25) requires the calculation of a matrix inverse (or the solution of a 1394 

linear system of equations).  However, this matrix inversion is typically quite affordable 1395 
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since P  is an obs obsN N  matrix, where obsN  is typically (10 100)−O  and is generally 1396 

much smaller than trN  (which is often (1,000 10,000)−O ). 1397 

5. Apply a localization routine (described in the following section) to prioritize the 1398 

influence of nearby observations on the data-assimilation procedure.  This step adjusts 1399 

the (global) Kalman gain, K , according to loc = KK L K , where KL is the localization 1400 

matrix given in Eq. (28), which is motivated below in Section B.3. 1401 

6. Update the ensemble state vector according to 1402 

1 * 1 *

loc obs obs

model prediction
perturbed for the observed
observations locations/variables

n n+ +

 
 
  = + + −  
 
 

x x K y ε y        (26) 1403 

where 1n+
x  is the final (analysis) state vector.  Eq. (26) represents an ‘optimal’ 1404 

interpolation between model and observations.  Eq. (26) demonstrates that the 1405 

( )tr var obsN N N   (localized) Kalman gain matrix locK  effectively scales/translates the 1406 

mismatch between the observation ensemble (of size obs ensN N ) and the model into 1407 

adjustments made to the state vector x  (with size ( )tr var ensN N N  ).  Note that the 1408 

bracketed term in Eq. (26) represents perturbation of the observed state vector, 1

obs

n+
y , with 1409 

the representative error/noise sampled from a multivariate normal distribution, 1410 

( )obs ,= 0 Rε N .  1411 

The model and data-assimilation methodology are summarized in Figure 14. 1412 
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 1413 

Figure 14 – Summary of the model and data-assimilation methodology, including the assembly 1414 

of the state vector ensemble. 1415 

 1416 

 1417 

 1418 
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B.3 Localization 1419 

Localization is a commonly used method in data assimilation to prioritize the influence of nearby 1420 

observations on the assimilated model state (Hamill et al., 2001).  For many beaches located 1421 

along the same broad stretch of coastline, we expect that observations of coastal change will be 1422 

correlated due to the spatial choerence of the underlying geologic and oceanographic process 1423 

(e.g., wave conditions) that force change.  Localization methods prioritize data locality during 1424 

the data assimilation step by suppressing the potential for spurious correlations in the model state 1425 

across large spatial distances. In the context of the current work, localization is attractive because 1426 

it effectively calibrates local shoreline behavior from local shoreline observations (while still 1427 

utilizing as much data as possible).  Further, because (satellite-derived) observations are 1428 

generally available (i.e., with comparable temporal resolution) for all transects, we have the 1429 

option to be “picky” when it comes to prioritizing site-specific data.  For modeling applications 1430 

in regions where beach profile data are available with far greater spacing than model transects 1431 

(e.g., Ruggiero et al., 2016), the localization method can also provide a means of assimilating 1432 

parameters for model transects in neighborhood of profile observations, without the need for the 1433 

(model and observational) transects to overlap, for example. 1434 

The two most common localization techniques include domain localization and covariance 1435 

localization.  The former applies the data assimilation separately for individual, independent 1436 

subdomains of the model.  The latter artificially tapers the model error covariance matrix, i.e., 1437 

the first term of Eq. (24), to suppress the influence of covariates that occur over large distances.  1438 

In the present work, we apply a novel ‘hybrid’ localization method, which applies concepts from 1439 

both domain and covariance localization methods.   The developed localization method replaces 1440 
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the (global) Kalman-gain matrix, K , of size ( )tr var obsN N N   given in Eq. (26), with a localized 1441 

Kalman-gain matrix locK  (which is of the same size) and is given by: 1442 

loc = KK L K           (27) 1443 

In Eq. (27), the  operator represents the Hadamard (or element-wise) product between the 1444 

original Kalman gain K  (given in Eq. (26)) and KL , which represents the localization matrix 1445 

that given by 1446 

obs e= KL L           (28) 1447 

In Eq. (28), [1 1 1]Te =  is a var 1N   vector of all ones, and   is an operator representing 1448 

the Kronecker product, which effectively “tiles” (i.e., replicates) the localization matrix obsL  for 1449 

each of the varN  elements of the assimilated state vector in Eq. (17).  In Eq. (28), obsL  is a 1450 

tr obsN N  localization matrix that is derived by selecting only specific columns (corresponding 1451 

to transects with co-located observations) from a global localization matrix L  of size tr trN N , 1452 

which is given by  1453 

cell2 dL
−

=

D

L I            (29) 1454 

The first term in the product on the right-hand side of Eq. (29) applies the concept of covariance 1455 

localization via a exponentially decaying function ( ) /
2 dx L

f x
−

=  (with decay distance 1456 

corresponding to the alongshore distance between two transects, i.e., 2dL = , in the present 1457 

application) and D  is the tr trN N  transect separation distance matrix 1458 
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( )
,i j

i j= −D  ,          (30) 1459 

where i   and j   represent transect indices.  Although the same decay function, ( )f x , and the 1460 

same decay distance 2dL =  are applied uniformly for all model parameters and all transects, the 1461 

hybrid method presented here, permits the possibility that different model parameters or transects 1462 

might be localized with different treatment (e.g., observations might be specified exert a stronger 1463 

or weaker spatial influence on certain model parameters). However, the optimization of this 1464 

approach is beyond the scope of this paper. 1465 

Eq. (29) also applies the concept of domain localization by introducing (user-specified or 1466 

automatically defined) “littoral cells”, which represent individual subdomains that isolate (i.e., 1467 

localize) assimilated changes to the model state to come only from observations falling within 1468 

the same littoral cell.  In Eq. (29), the (global) littoral cell adjacency matrix cellI  of size tr trN N  1469 

is used to implement domain localization, which represents the explicit introduction of (user-1470 

controlled) spatial structure into the data-assimilation method (which is otherwise controlled 1471 

only by the (global) covariance of the model state, see Eq. (25)).  In the current application, cellI  1472 

represents a Boolean matrix that is given by 1473 

( )cell ,

1       if transect  is within the same littoral cell as transect 

0      otherwise                                                                      i j

i j
= 


I     1474 

cellI  effectively sets many of the elements of the localized Kalman gain locK  equal to zero for all 1475 

model transects located in a different user-defined ‘littoral cell’ than the cell with observations 1476 

currently being assimilated.  In the context of the California application model, the ‘littoral cells’ 1477 

(for the purposes of data assimilation) are defined as sets of transects that share a continuous 1478 
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stretch of sandy beach with the same model-type designation (e.g., “full model”, “cross-shore 1479 

only”, etc. as described in Appendix A) that are not interrupted by inlets, headlands, harbors, or 1480 

large jetties, for example.  In short, the method, detailed above, ensures that model parameter 1481 

values are assimilated using observations that fall within the same littoral cell.  Note that when 1482 

the elements of the Kalman gain locK  are zero, then the assimilation step does not alter the 1483 

model state vector in Eq. (26), i.e., 1 *n+ =x x  , for all transect that are considered  “non-local” to a 1484 

given shoreline observation.  Figure 15 depicts idealized versions of the cellI  matrix, the distance 1485 

matrix D , and the full localization matrix L  for a subset of the model transects used here (i.e., 1486 

transects #1-1200) for illustration purposes.   1487 
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 1488 

Figure 15 – The components (i.e., a map of the identified littoral cells in panel A, the littoral cell 1489 

adjacency matrix cellI  shown in panel B, and the transect-separation distance matrix D  shown in 1490 

panel C) of the localization matrix ( L ) shown in panel C for the present application, which is 1491 

shown only for a limited subset of the transects used here (i.e., transects #1-1200 in southern 1492 

California).  Note that the black blocks in panel B represent the connectivity of major littoral 1493 

cells identified in the model, which are also shown in panel A. 1494 

 1495 

B.4 Initial conditions for the model ensemble 1496 

The ensemble method presented here applies a user-specified range of randomly generated initial 1497 

conditions of the model state, which are drawn from probability distributions.  In general, the 1498 
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selection process of the range of the initial values for each model parameter is a bit arbitrary and 1499 

is subject to some uncertainty.  Ideally, the initial range of model parameters should be 1500 

motivated by the corresponding values of other modeling studies reported in the literature at 1501 

geologically similar sites.  Although the initial conditions must be specified directly, we find that 1502 

a modest mis-specification (e.g., within an order of magnitude) of the initial parameter ensemble 1503 

does not severely degrade the assimilated parameter estimates over time (Evensen, 2003).  For 1504 

most applications, initial conditions are sampled from normal distributions constructed from a 1505 

prescribed mean and standard deviation.  In the current application, the ens 200N =  ensemble of 1506 

the model state is initialized with normally-distributed random-number generator with zero mean 1507 

and standard deviation 
st

5 mY =  for the short-term shoreline position, stY .  On the other hand, 1508 

the long-term shoreline components (namely lstY , bruY , and vltY ) are considered to be known 1509 

initially and hence are set to be identically zero.  The initial shoreline position 0Y  for each 1510 

transect is also set to a constant value (obtained via nearest neighbor interpolation) that 1511 

represents the observed shoreline position that is closest in time to the model start time among 1512 

the complete set of observations for a given transect. 1513 

The model parameter ensemble is initialized with normal distributions for T  and Y  with 1514 

means of 28 daysT =  and 10 mY = , and standard deviations of 1 dayT  =   and 2 mY  = , 1515 

respectively.  The background wave height parameter ˆ
sH  is initialized with a normal distribution 1516 

with the mean wave-height time series on each transect (
sH ) and a standard deviation which is 1517 

selected as 7.5% of 
sH , based on our judgment as a reasonable initial spread of this parameter.  1518 

Alongshore smoothing (via a low-pass filter) of the background wave height ˆ
sH  is also applied 1519 
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in order to remove high frequency noise/variability in the model parameter (in the alongshore 1520 

direction).  1521 

The model parameter ensemble is also initialized with normal distributions for c  and   with 1522 

means of 1c =   and  0.25 m = , and standard deviations of 0.1c =   and 0.1 m = , 1523 

respectively. The long-term shoreline change rate parameter ltv  is initialized with a normal 1524 

distribution with a standard deviation of 
lt

0.05 m/yearv = and a mean of ( )lt lt 0
0.25v v= , where 1525 

( )lt 0
v  represents the historical erosion rate obtained via a linear regression fit to all available data 1526 

on each transect (see Section 3.1 and Figure 5 for details).  In setting the initial rate parameter to 1527 

25% of the historical (linear) erosion rate, we implicitly assume that the other resolved long-term 1528 

components (e.g., longshore transport and Bruunian response) account for some (i.e., 75%) of 1529 

the long-term shoreline change signal, as an initial guess.  However, of course, the data-1530 

assimilation method will subsequently calibrate the relative parameters and the contributions of 1531 

each shoreline-change component accordingly. 1532 

Thus far, we have detailed that all model state and parameter initial conditions are either constant 1533 

or have been drawn from normal distributions.  However, the longshore transport parameter K  1534 

is treated differently: K  is initialized with a uniform distribution between values of 0 and 200.  1535 

In this case, a uniform distribution is applied to this parameter owing to its underlying 1536 

uncertainty and spatial variability in contrast to the equilibrium shoreline parameters ( T , Y , 1537 

and ˆ
sH ), the long-term parameters ( c  and ltv ), and the noise parameter ( ).   1538 

In addition to the procedure in specifying the initial conditions given above, we also impose 1539 

longshore variability to the initial parameters T , Y , and K .  We introduce longshore 1540 
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structure into the initial parameter ensembles by multiplying the initially longshore-uniform 1541 

parameter estimate by a set of simple spatially varying ‘basis functions’ for each littoral cell.  1542 

Although the basis functions are rather arbitrary, in the current example, we apply well-known 1543 

Legendre polynomials (up to fourth order) and Fourier basis functions (half wave and full wave 1544 

sin/cos functions), which are modified to have a unit mean and are shown in Figure 16 panels A 1545 

and B, respectively, to construct an overall alongshore structure ensemble (shown in panel C) for 1546 

each individual littoral cell.  We also randomly scale the basis functions by ~ 25% , in order to 1547 

introduce additional magnitude variability into the alongshore structure ensemble.  The 1548 

alongshore structure ensemble (shown in panel C) is then multiplied by the initial parameter 1549 

estimates (for T , Y , and K ) for each separate littoral cell. 1550 

 1551 

Figure 16 – Simple alongshore basis functions in the form of (modified) Legendre polynomials 1552 

(panel A) and Fourier (half and full sin/cos) waves (panel B).  An alongshore structure ensemble 1553 

(panel C) is constructed from a random sampling and scaling of the simple basis functions shown 1554 

in panels A and B.  Subsequently, the longshore structure function (shown in panel C) is 1555 

multiplied by the initial parameter estimates (for parameters T , Y , and K  only) for each 1556 

separate littoral cell. 1557 

 1558 

The introduction of a longshore structure ensemble into the initial conditions (as opposed to 1559 

applying a spatially uniform ensemble) allows the model to encapsulate different possible 1560 
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realizations of the longshore variability in the model parameters and thus is generally better 1561 

conditioned to assimilate (i.e., to nudge the model toward) the correct underlying structure to 1562 

emerge from the initially imposed gradients.  Although the proposed method has not been fully 1563 

tested or optimized (which is beyond the scope of the current paper), we find (from initial tests, 1564 

which are not shown) that the longshore-structured, initial ensemble generally outperforms the 1565 

alongshore-uniform initial parameter estimates.  Further, we also note that even though the ad 1566 

hoc initial longshore structure is imposed in a specific form (analogous to a best-guess initial 1567 

condition provided to an optimization routine), the assimilated structure can eventually take on 1568 

much more arbitrary complexity than that of the simple functions shown in panel C.  1569 

B.5 Observation error covariance 1570 

A user-defined specification of the spatial correlation (in the alongshore direction) of the error of 1571 

satellite-derived shoreline observations is needed for the Kalman filter data-assimilation 1572 

operation (described above).  Lacking observations of the shoreline error covariance in the 1573 

alongshore direction, the observation error covariance matrix R  is often treated as a diagonal 1574 

matrix (with 2

RMS  sitting on each diagonal entry), where the error in observed shoreline position 1575 

( RMS ) at each transect is assumed to be independent from the error at all other transects, near or 1576 

far.  However, here, with aid of direct estimates of the shoreline error in space (provided by the 1577 

Ocean Beach data described in Section 2.3), we can account for the spatial correlation of the 1578 

error using the approach described below. 1579 

We compute the (symmetric) observed shoreline error covariance matrix as 1580 

( ),i j i jE=R ε ε           (31) 1581 
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where E  is the expected value operator (i.e., the mean, in this case), iε  is the time series of the 1582 

shoreline error at transect i  (and likewise for transect j ).  Although R  (Eq. (31)) can, in 1583 

general, only be calculated at sites where ‘ground-truthed’ shoreline observations (e.g., GPS-1584 

derived shorelines) are available to assess the error in the satellite-derived shorelines (e.g., Ocean 1585 

Beach, in this example), we seek to derive and apply a parameterized version of this R  matrix 1586 

for a broad range of sites lacking in-situ observations.  In essence, we seek to understand the 1587 

spatial decay of the shoreline error covariance.  To do so, we calculate the covariance decay as a 1588 

function of transect proximity (i.e., distance), k , given by 1589 

transects

median(diag( , ))
      for 0 :

median(diag( ,0))
k

k
r k N= =

R

R
         (32) 1590 

where kr  is the so-called ‘shoreline error covariance decay’, which represents how the shoreline 1591 

error is correlated among nearby transects and becomes increasingly uncorrelated with 1592 

alongshore distance.  In Eq. (32), the diag( , )kR  operation represents the extraction of the thk -1593 

diagonal of the covariance matrix R  (where diag( , 0)R  is the main diagonal of R ).  In Figure 1594 

17, we fit a smoothed curve (shown in red) of the form 1595 

( ) ( )1 2 3= exp( / ) 0.5tanh( / ) exp( / )r l l l l  − + −       (33) 1596 

as a function of alongshore distance l  to the observed shoreline error covariance decay (shown 1597 

in blue).  Eq. (33) represents the sum of a (rapidly) decaying function (exp) and a plateau 1598 

function (tanh) that is modulated by another (more slowly) decaying function, parameterized 1599 

with length scales 1 , 2 , and 3 , with values here of 0.2 km, 0.4 km, and 5 km, respectively.   1600 
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 1601 

Figure 17 – The variance decay of the shoreline error vs distance away from the transect for the 1602 

Ocean Beach data (blue) and the parameterized version (red). 1603 

 1604 

As described above, in the current modeling application, in absence of direct, site-specific 1605 

observations of the error covariance matrix over the entire model domain, we apply the 1606 

smoothed function r  given in Eq. (33) to construct a smoothed error covariance matrix 1607 

according to 1608 

( ) 2

, sati j i jr l l = −R           (34) 1609 

where
i jl l−  is the absolute value of the distance from transect i  to transect j  and sat 14 m =  is 1610 

the RMSE of satellite-derived shorelines as reported above.   1611 

 1612 

 1613 

 1614 
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Appendix C:  Model inputs – future climate and management scenarios 1615 

C.1 Wave modeling  1616 

Climate change is expected to drive changes to mean and extreme wave climates in many areas 1617 

(Morim et al., 2019, 2021), which should ideally be accounted for when predicting long-term 1618 

coastal evolution. The current shoreline model is forced with a variety of wave hindcast and 1619 

wave projection products (as depicted in Figure 18 A and B, respectively), according to their 1620 

spatiotemporal availability.  Across the vast majority of the hindcasted period (1995-2020), 1621 

hindcasted wave conditions (e.g., time series of significant wave height period and direction) 1622 

come from the California Coastal Data Information Program – CDIP hindcast (O’Reilly et al., 1623 

2016), which is coincident with model transects and is available from 2000 to 2020.  From 1995-1624 

2000, hindcasted wave conditions (Figure 18 A) come from different offshore sources (shown in 1625 

the superscripts in Figure 18) including (1) the CFSRR-wind driven WW3 hindcast 1626 

(http://polar.ncep.noaa.gov/waves/hindcasts/nopp-phase2.php), (2) the US Army Corps of 1627 

Engineers Wave Information Studies (WIS; http://wis.usace.army.mil/), (3) the CaRD10 1628 

reanalysis and projection of winds and sea level pressures. (Scripps Institute of Oceanography, 1629 

University of California at San Diego, 2015), (4) Buoy observations from the National Data 1630 

Buoy Center (NDBC) site (https://www.ndbc.noaa.gov/), which are downscaled to the coast 1631 

using look-up tables (5-6: Hegermiller et al., 2016-2017) when the CDIP hindcast (7: O’Reilly et 1632 

al., 2016) was unavailable.  Beyond 2020, the model is driven by projected time series (2020 to 1633 

2100) of daily mean wave heights and corresponding wave periods and directions generated 1634 

from a global-to-regional wave model (WaveWatch III; Erikson et al., 2015, depicted using 1635 

superscript 8 in Figure 18), which uses wind forcing from the GFDL-ESM2M climate model 1636 

http://polar.ncep.noaa.gov/waves/hindcasts/nopp-phase2.php
http://wis.usace.army.mil/)
https://www.ndbc.noaa.gov/
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(Delworth et al., 2006, depicted with superscript 9 in Figure 18) under the “moderate” 1637 

representative concentration pathway (RCP) 4.5 emissions scenario (Stocker, 2014).  Offshore 1638 

wave conditions (Figure 18 B) are, once again, downscaled to each shoreline model transect 1639 

using the look-up-table approach of Hegermiller et al. (2016, 2017). 1640 

 1641 

Figure 18 – Overview of the method used to compute nearshore (15 m isobath) wave time-series 1642 

for the years 2020 to 2100. A) Look-up tables that relate binned offshore wind (magnitude and 1643 

direction) and wave (height, period, and direction) conditions to nearshore waves were 1644 

developed by finding corresponding nearshore wave conditions generated from high resolution 1645 

nearshore wave downscaling models. Downscaling of nearshore wave conditions was achieved 1646 

with high spatiotemporal resolution SWAN models for southern California and ray tracing 1647 

techniques for central and northern California (i.e., the CDIP hindcast).  B) Implementation of 1648 

the look-up tables for rapid downscaling of projected offshore wind and wave conditions to the 1649 

nearshore. Projected offshore wave conditions were derived with the numerical wave model 1650 

WaveWatch III (NOAA) forced with winds from the GFDL-ESM2M RCP 4.5 climate model. 1651 

The WaveWatch III model consists of a global and nested regional Eastern North Pacific grid 1652 

(0.25o resolution; red line shown in inset). Wave buoys used to translate offshore conditions to 1653 

the nearshore are shown with cyan circles (5- and 3-digit numbers refer to NDBC- and CDIP-1654 

owned buoys, respectively. Wave height maps represent a sample time-point from January 10th, 1655 

2044. 1656 

 1657 
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Accurate hindcasts and projections of nearshore wave conditions are needed in the current 1658 

application because the model formulations in Eq. (1) are highly sensitive to wave conditions.  In 1659 

particular, anomalies/variations in wave angle and wave energy can significantly affect the 1660 

calculation of longshore transport (via Eq. (8); e.g., Chataigner et al., 2022) and equilibrium 1661 

shoreline response (via Eqs. (10) - (11); e.g., Vitousek et al., 2021), respectively.  In the current 1662 

application, the shoreline model is forced with a single projected time series of wave conditions 1663 

(from Hegermiller et al., 2016).  However, this wave forcing time series represents only a single 1664 

realization of the stochastic wave climate system.  Use of an ensemble wave forcing approach 1665 

(e.g., Davidson, et al. 2017, Cagigal et al., 2020) would likely improve the range of potential 1666 

short-term shoreline positions and estimates of uncertainty as shown in Vitousek et al. (2021). 1667 

However, the uncertainty of long-term wave-driven shoreline change (e.g., due to longshore 1668 

transport) and sea-level rise will still generally be well captured by the ‘single realization’ 1669 

approach used here since the long-term processes are driven more by the mean wave climatology 1670 

rather than the instantaneous weather/wave conditions.  Nevertheless, to compensate for not 1671 

applying ensemble wave conditions, we provide (at each transect location) estimates of 1672 

intrinsic/aleatoric uncertainty in shoreline position associated with annual, 20-year, and 100-year 1673 

return period wave events, following Davidson et al. (2017), as demonstrated in Figure 19.  The 1674 

method used here fits a Generalized Extreme Value (GEV) distribution (see Coles et al., 2001) to 1675 

the annual maxima in the short-term shoreline position, stY  , as shown in the red dots in Figure 1676 

19 C and D.  1-year, 20-year, and 100-year erosion events are the estimated from the fitted GEV 1677 

distribution (purple line in Figure 19 D).  Finally, storm-driven erosion uncertainty bands 1678 

corresponding to 1-year, 20-year, and 100-year erosion event levels are then superimposed onto 1679 
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the model projections at each transect (as shown in the yellow, red, and brown bands of panel 1680 

Figure 19 E, respectively). 1681 

 1682 

Figure 19 – An example of CoSMoS-COAST simulations of total shoreline position (panel B) 1683 

and short-term shoreline position (panel C) in response to projected wave and sea-level 1684 

conditions (panel C) at transect 7991 at Ocean Beach, California.  A Generalized Extreme Value 1685 

(GEV) distribution (purple line in panel D) is fit to the annual maxima in the short-term shoreline 1686 

position (red dots in panels C and D).  1-year, 20-year, and 100-year erosion events are estimated 1687 

from the fitted GEV distribution (panel D), and storm-driven erosion uncertainty bands 1688 

corresponding to these event levels are then mapped onto each transect (as shown in the yellow, 1689 

red, and brown bands of panel E, respectively). (Basemap is from a current, high-resolution 1690 

aerial photograph of Ocean Beach available through NOAA Digital Coast). 1691 

 1692 



 

91 

 

C.2 Sea-level rise scenarios 1693 

The uncertainty of future coastal erosion is intimately linked to sea-level rise (Anderson et al., 1694 

2015; Vitousek et al., 2017; Le Cozannet et al., 2019; Vousdoukas et al., 2020; D’Anna et al., 1695 

2021a, 2022).  In the current application, we consider nine sea-level rise scenarios: 0.5, 0.75, 1.0, 1696 

1.25, 1.5, 1.75, 2.0, 2.5, and 3.0 m (shown in Figure 20), which cover the range of physically 1697 

tenable sea-level outcomes in California over the 21st century (e.g., Griggs et al., 2017, Sweet et 1698 

al., 2022).  The high-end sea-level scenarios, used here, as shown in Figure 20, are consistent 1699 

with the so-called ‘H++’ scenario (Sweet et al., 2017), which represent a scenario of extreme ice 1700 

melt in the West Antarctic ice sheet. As in Vitousek et al. (2017), sea level versus time is 1701 

modeled as a quadratic function.  The three unknown coefficients of the quadratic curve are 1702 

obtained via three equations: (1) The mean sea level in 2000 is assumed to be at zero elevation, 1703 

(2) the rate of SLR in 2000 is assumed to be 3 mm/yr, which is consistent with global mean 1704 

values of sea-level rise observed via satellites, (3) future sea-level elevation at 2100 is assumed 1705 

to be 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, or 3.0 m based on the scenarios considered (see 1706 

Figure 20).  We note that, in the current application, sea level only forces equilibrium profile 1707 

changes via the third term on the right-hand side of Eq. (1), which is in line with many recent 1708 

studies (Anderson et al., 2015; Vitousek et al., 2017; Le Cozannet et al., 2019; Vousdoukas et al., 1709 

2020; D’Anna et al., 2021a, 2022) 1710 
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 1711 

Figure 20 – Scenarios of sea-level rise (i.e., 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, or 3.0 m) used 1712 

in the current application, which follow from the California Guidance (Griggs et al., 2017).  1713 

 1714 

C.3 Coastal management scenarios 1715 

In this application, we explore the combination of nine sea-level projections (see Figure 20) and 1716 

four management scenarios.  The four management scenarios result from two independent, 1717 

binary scenarios, namely, “hold the line” and “continued nourishment”.  The “hold the line” 1718 

scenario represents the management decision to prevent or allow the shoreline from receding 1719 

past existing infrastructure (e.g., by permitting or prohibiting shoreline armoring, respectively) or 1720 

naturally hardened shorelines (e.g., cliffs, bluffs, and headlands).   If the line is held, then the 1721 

modeled shoreline is constrained from eroding past a so-called ‘non-erodible shoreline’, which is 1722 
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manually digitized from recent aerial and satellite imagery and represents the division of beach 1723 

and urban infrastructure, cliffs, or highly vegetated areas (following Vitousek et al., 2017).  If the 1724 

line is not held, then the shoreline is allowed to erode into existing infrastructure and coastal 1725 

cliffs without impediment as if the eroded substrate is the same as a sandy beach.  As in the 1726 

original CoSMoS-COAST model application (Vitousek et al., 2017), we assume that any dunes 1727 

or cliffs do not erode landward with the beach, and that the non-erodible shoreline stays fixed 1728 

through time.  1729 

The “continued accretion” scenario represents the management decision to continue or cease the 1730 

long-term residual shoreline trend (which can be affected by processes such as beach 1731 

nourishment, fluvial sediment input, and other sources of sediment that contribute to chronic 1732 

accretion) determined from assimilation of recent historical data (1995-2020).  The scenario was 1733 

previously called “continued nourishment” in Vitousek et al. (2017) when the model domain was 1734 

limited to southern California, where some nourishment projects have taken place.  The current 1735 

application spans all of California, where nourishments are rare in central and northern 1736 

California.  Hence, the scenario, now referred to as “continued accretion”, assumes that both 1737 

natural (e.g., fluvial) and anthropogenic (e.g., nourishment) accretionary signals will persist or 1738 

cease. In the model, the “continued accretion” scenario is implemented allowing the data-1739 

assimilated value of ltv  to remain unchanged during the forecast period (2020-2100).  On the 1740 

other hand, the “no continued nourishment” scenario forces lt 0v =  starting in 2020 (at the end of 1741 

the validation period) for each accreting transect where lt 0v  .  We note that any chronically 1742 

eroding transects (with lt 0v  ) are held constant at the end of the data-assimilation period, and 1743 

thus are unaffected by the choice of the “continued accretion” vs “no continued accretion” 1744 
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scenario.  The 9 sea-level scenarios and 4 management scenarios combine to give a total of 36 1745 

different models run as part of this effort.  For each scenario, we provide time series of expected 1746 

shoreline change including long-term erosion hazards zone (median projection + 95% confidence 1747 

intervals for the parametric and structural uncertainty) plus additional storm-driven erosion 1748 

hazard zones that correspond to annual, 20-year, and 100-year return period wave-driven erosion 1749 

events.  Above, the ‘Data availability statement’ contains information on where the model-1750 

projections, produced as part of this study, can be accessed.  1751 

 1752 

Appendix D: Satellite-derived shoreline error and ‘proxy-datum bias’ 1753 

The so-called ‘proxy-datum bias’ (Moore et al., 2006; Ruggiero & List, 2009) is a well-known 1754 

source of error in historical shoreline analyses that combine data sets of both elevation/datum-1755 

based surveys (e.g., Lidar/GPS) and visual/proxy-based (e.g., digitized shorelines from aerial 1756 

photos) shoreline observations.  In short, there can often be a slight offset or ‘bias’ between the 1757 

two different sources of data, which should ideally be accounted/corrected for.  The proxy-datum 1758 

bias remains poorly understood in the context of satellite derived shoreline observations.  Below, 1759 

we seek to explore the proxy-datum bias of satellite-derived shorelines with the aid of monthly 1760 

GPS observations at Ocean Beach, California. 1761 

Figure 21 shows a histogram of the median error in tide-corrected satellite derived shoreline 1762 

position (i.e., GPS shoreline position minus the satellite-derived shoreline position) for all Ocean 1763 

Beach transects as a function of month.  Hence, positive values of the error indicate that the 1764 

satellite-derived shorelines are consistently located farther landward than GPS-derived MSL 1765 

shoreline contour.  We hypothesize that the landward bias of the tide-corrected satellite 1766 
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observations shown in Figure 21 is due to wave setup (i.e., the persistent increase in nearshore 1767 

water levels due to wave breaking, which can be corrected for).  This hypothesis is supported by 1768 

comparing the shoreline error (y-axis on the left side of Figure 21) to the median significant 1769 

wave height (y-axis on the right side of Figure 21, which recorded at the NOAA National Data 1770 

Buoy Center’s San Francisco wave buoy #46026, located 33 km offshore from Ocean Beach).  1771 

The pink bands on Figure 21 represent the 20th to 80th percentiles of the monthly wave height 1772 

about the median monthly significant wave height (solid red line).  Figure 21 demonstrates that 1773 

the bias is correlated with wave height: the bias is largest in February when the waves are 1774 

generally the largest, and conversely, the bias is smallest in August when the waves are generally 1775 

the smallest.   1776 

 1777 
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Figure 21 – The error/bias in meters between the GPS surveys and the satellite-derived shoreline 1778 

position at Ocean Beach, San Francisco, California as a function of month. The median of the 1779 

monthly significant wave height is shown as a solid red line with the pink envelope representing 1780 

the 20% to 80% percentiles of the monthly wave height. 1781 

 1782 

 1783 

Figure 22 – The median error / bias between the modeled and observed tide at Ocean Beach, San 1784 

Francisco, California as a function of month (blue bars). The bias is likely due to (negative) 1785 

monthly mean sea-level anomalies (typically associated with upwelling-favorable winds in 1786 

spring), shown in red with 80% confidence bands in pink, which are not resolved in the tidal 1787 

model. 1788 

 1789 

As discussed in Section 2.3, much of the error/bias between (water-level-dependent, proxy-1790 

based) satellite derived shorelines and (water-level invariant, datum-based) GPS shorelines can 1791 
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be attributed to the instantaneous water level.  Figure 22 shows the median difference between 1792 

modeled (using the Finite-Element Solution (FES) ocean model – Lyard et al., 2021) and 1793 

observed water levels (using the San Francisco tide-gauge station #9414290) near Ocean Beach, 1794 

San Francisco, California, as a function of month.  We also compare the modeled-water-level 1795 

error (y-axis on the left) to the monthly mean sea-level anomaly (y-axis on the right) on Figure 1796 

22, where the pink bands represent the 20 to 80% percentiles of the monthly wave height about 1797 

the median (solid red line).  The mean difference between the modeled and observed water level 1798 

across all months is 7.34 cm, which is compared to the optimal correction value of 12.72 cm, 1799 

found in Section 2.3.  This indicates that more than half of the proxy-datum bias (after correcting 1800 

for tide, setup, and monthly-mean sea-level anomalies) of satellite-derived shorelines is likely 1801 

due to the water-level offset between the modeled and observed water.  The difference between 1802 

modeled and observed water level may be due to dynamic, oceanographic processes (which may 1803 

be difficult to rectify via modeling) and/or datum issues (which may be easy to rectify via an 1804 

appropriate, additive constant determined from observations).  It is well known (Gill & Clarke, 1805 

1974; Schwing, 2000) that upwelling-favorable winds on the California coast during spring and 1806 

early summer months decrease nearshore sea levels (see red line on Figure 22), which are not 1807 

resolved in the FES-modeled astronomical tidal predictions and may contribute to the model’s 1808 

over-prediction of spring/summer water levels in Figure 22.  It is also possible that the image-1809 

processing algorithm that identifies the shoreline (i.e., the division between water and sand) may 1810 

be slightly biased toward detecting wet sand (i.e., a landward bias) or subaqueous shoreline 1811 

features (i.e., seaward bias), as is known to occur in certain settings like macrotidal environments 1812 

(Castelle et al., 2021).  However, the relative contributions to the overall bias are difficult, if not 1813 

impossible, to diagnose in the absence of additional ‘ground-truth’ observations.  Nevertheless, 1814 
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we find (in Figure 21 and Figure 22) that both waves and water levels play strong roles in the 1815 

identification of shoreline position in satellite imagery at Ocean Beach.  As shown here and in 1816 

Section 2.3, with the aid of some corrections, we can obtain nearly unbiased estimate of the 1817 

shoreline position at Ocean Beach from satellite imagery.  Further, we can apply these water-1818 

level-correction methods more broadly to (presumably) obtain more accurate satellite-derived 1819 

shoreline observations in otherwise data-deficient locations. 1820 
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