Fluoride exposure, dopamine relative gene polymorphism and intelligence: A cross-sectional study in China

https://doi.org/10.1016/j.ecoenv.2020.111826Get rights and content
Under a Creative Commons license
open access

Highlights

  • Urine fluoride was inversely associated with IQ.

  • IQ of children with high-activity MAOA genotype was lower than IQ of those with low-activity or female heterozygote genotype.

  • DAT1 and MAOA gene polymorphism modify the effects of UF on IQ.

  • UF, ANKK1, COMT and MAOA have a high-dimensional interaction on IQ.

Abstract

Background

Excessive fluoride exposure is related to adverse health outcomes, but whether dopamine (DA) relative genes are involved in the health effect of low-moderate fluoride exposure on children’s intelligence remain unclear.

Objectives

We conducted a cross-sectional study to explore the role of DA relative genes in the health effect of low-moderate fluoride exposure in drinking water.

Methods

We recruited 567 resident children, aged 6–11 years old, randomly from endemic and non-endemic fluorosis areas in Tianjin, China. Spot urine samples were tested for urinary fluoride concentration, combined Raven`s test was used for intelligence quotient test. Fasting venous blood were collected to analyze ANKK1 Taq1A (rs1800497), COMT Val158Met (rs4680), DAT1 40 bp VNTR and MAOA uVNTR. Multivariable linear regression models were used to assess associations between fluoride exposure and IQ scores. We applied multiplicative and additive models to appraise single gene-environment interaction. Generalized multifactor dimensionality reduction (GMDR) was used to evaluate high-dimensional interactions of gene-gene and gene-environment.

Results

In adjusted model, fluoride exposure was inversely associated with IQ scores (β = −5.957, 95% CI: −9.712, −2.202). The mean IQ scores of children with high-activity MAOA genotype was significantly lower than IQ scores of those with low-activity (P = 0.006) or female heterozygote (P = 0.016) genotype. We detected effect modification by four DA relative genes (ANKK1, COMT, DAT1 and MAOA) on the association between UF and IQ scores. We also found a high-dimensional gene-environment interaction among UF, ANKK1, COMT and MAOA on the effect of IQ (testing balanced accuracy = 0.5302, CV consistency: 10/10, P = 0.0107).

Conclusions

Our study suggests DA relative genes may modify the association between fluoride and intelligence, and a potential interaction among fluoride exposure and DA relative genes on IQ.

Keywords

Fluoride
Intelligence quotient
Effect modification
Interaction

Cited by (0)