

WATERSHED VISION: Connecting urban and rural communities for the improvement and preservation of the Dry Run Creek Watershed.

WATERSHED PLAN GOALS

- Treat the runoff from the initial 1.25" of rainfall events in urban areas of the watershed.
- Reduce sediment by 30% delivered to the streams.
- Improve/protect in-stream habitat along 25% of the stream corridor.
- Conduct an extensive information and education program to increase stakeholder awareness on the impacts of their land use decisions on local natural areas and to inform them of programs and practices available to them.

WATERSHED STATS

30 MILES OF STREAM POPULATION: 41,255 Increased 13% since 2000

VOLUNTEER STATS

4,858 volunteer hours contributed

VOLUNTEER **OPPORTUNITIES:**

Biological snapshot, rain garden, advisory board, job shadows, biological and water monitoring

PRACTICES IN PLACE

URBAN:

bioretention cells, permeable pavement, rain gardens, streambank stabilization/ rehabilitation, stormwater wetland

RURAL:

grassed waterways, cover crops, filter strips, nutrient management

DRY RUN CREEK WATERSHED DEMONSTRATING PROGRESS

PROGRESS TOWARD WATERSHED PLAN GOALS 2005-2019

RURAL SOIL LOAD REDUCTION IN STREAMS

URBAN STREAMBANK STABILIZATION/REHABILITATION

5,944 FT 580% OF GOAL

BIOLOGICAL DATA

Species Richness: Benthic Macrovertebrates 30 25 Average # of Species 20 15 10 5 0 1999 2005 2009 2011 2013 2018 2010 2015 2016 BMI Species Sensitive BMI Species

Species richness is calculated as the average number of species taxa found at two sampling sites on Dry Run Creek.

WHY MEASURE BENTHIC MACROINVERTEBRATES?

Benthic macroinvertebrates (BMI) are stream-dwelling animals without backbones that are large enough to be seen without magnification. Some species of BMI are more sensitive to water pollution. Their presence or absence is used as an indicator of water quality. If the number of sensitive species increases over time, it indicates the water quality is improving.

EXAMPLES OF SENSITIVE BMI:

Small Squaregill Mayfly Common Netspinner Caddisfly Physid Snails

Photos courtesy of State Hygienic Laboratory